23/08/2025


23/08/2025
23/08/2025
Bài 2:
1)
$P=\frac{3\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{5\sqrt{x}+2}{x-4}$
$=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}$
$=\frac{3x-6\sqrt{x}+x+3\sqrt{x}+2-5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}$
$=\frac{4x-8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}$
$=\frac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}$
$=\frac{4\sqrt{x}}{\sqrt{x}+2}$
2)
$P=\frac{4\sqrt{x}}{\sqrt{x}+2}=4-\frac{8}{\sqrt{x}+2}$
Để $P\in Z\Rightarrow\frac{8}{\sqrt{x}+2}\in Z\Rightarrow\sqrt{x}+2\inƯ\left(8\right)=\left\lbrace\pm1;\pm2;\pm4;\pm8\right\rbrace$
$\Rightarrow x\in\left\lbrace0;4;36\right\rbrace$
Mà $x\ge0;x\ne4\Rightarrow x\in\left\lbrace0;36\right\rbrace$
Bài 3:
1)
$P=\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{3x+9}{x-9}$
$=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}$
$=\frac{2x+6\sqrt{x}+x-3\sqrt{x}+\sqrt{x}-3-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}$
$=\frac{4\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}$
$=\frac{4}{\sqrt{x}+3}$
2)
Để $P\in Z\Rightarrow\sqrt{x}+3\inƯ\left(4\right)=\left\lbrace\pm1;\pm2;\pm4\right\rbrace$
$\Rightarrow x\in\left\lbrace1\right\rbrace$
Bài 4:
1)
$P=\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{5\sqrt{x}}{\sqrt{x}-1}-\frac{6x+4}{x-1}$
$=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)+5\sqrt{x}\left(\sqrt{x}+1\right)-6x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}$
$=\frac{x+\sqrt{x}-2+5x+5\sqrt{x}-6x-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}$
$=\frac{6\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}$
$=\frac{6}{\sqrt{x}+1}$
2)
Để $P\in Z\Rightarrow\frac{6}{\sqrt{x}+1}\in Z\Rightarrow\sqrt{x}+1\inƯ\left(6\right)=\left\lbrace\pm1;\pm2;\pm3;\pm6\right\rbrace$
$\Rightarrow x\in\left\lbrace0;1;4;25\right\rbrace$
Vì $x\ge0;x\ne1\Rightarrow x\in\left\lbrace0;4;25\right\rbrace$.
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
3 giờ trước