
01/11/2025
01/11/2025
minhthu_ Đặt x=cosα⇒1−x2=sinαx = \cos \alpha \Rightarrow \sqrt{1 - x^2} = \sin \alphax=cosα⇒1−x2
=sinα (vì −1≤x≤1-1 \le x \le 1−1≤x≤1).
Khi đó:
P=1−cosα+(1−cosα)sinα+1−cosα−(1−cosα)sinαP = \sqrt{1 - \cos \alpha + (1 - \cos \alpha)\sin \alpha} + \sqrt{1 - \cos \alpha - (1 - \cos \alpha)\sin \alpha}P=1−cosα+(1−cosα)sinα
+1−cosα−(1−cosα)sinα
Ta có:
1−cosα=2sin2α2,sinα=2sinα2cosα21 - \cos \alpha = 2\sin^2 \dfrac{\alpha}{2}, \quad \sin \alpha = 2\sin\dfrac{\alpha}{2}\cos\dfrac{\alpha}{2}1−cosα=2sin22α,sinα=2sin2αcos2αThay vào:
P=2sin2α2+4sin3α2cosα2+2sin2α2−4sin3α2cosα2P = \sqrt{2\sin^2 \dfrac{\alpha}{2} + 4\sin^3 \dfrac{\alpha}{2}\cos\dfrac{\alpha}{2}} + \sqrt{2\sin^2 \dfrac{\alpha}{2} - 4\sin^3 \dfrac{\alpha}{2}\cos\dfrac{\alpha}{2}}P=2sin22α+4sin32αcos2α
+2sin22α−4sin32αcos2α
Rút 2sinα2\sqrt{2}\sin\dfrac{\alpha}{2}2
sin2α ra ngoài:
P=2sinα2[1+2sinα2cosα2+1−2sinα2cosα2]P = \sqrt{2}\sin\dfrac{\alpha}{2} \left[\sqrt{1 + 2\sin\dfrac{\alpha}{2}\cos\dfrac{\alpha}{2}} + \sqrt{1 - 2\sin\dfrac{\alpha}{2}\cos\dfrac{\alpha}{2}}\right]P=2
sin2α[1+2sin2αcos2α
+1−2sin2αcos2α
]Nhưng 2sinα2cosα2=sinα2\sin\dfrac{\alpha}{2}\cos\dfrac{\alpha}{2} = \sin \alpha2sin2αcos2α=sinα.
Do đó:
P=2sinα2[1+sinα+1−sinα]P = \sqrt{2}\sin\dfrac{\alpha}{2} \left[\sqrt{1 + \sin \alpha} + \sqrt{1 - \sin \alpha}\right]P=2
sin2α[1+sinα
+1−sinα
]Ta có:
1+sinα+1−sinα=2(cosα2+sinα2)\sqrt{1 + \sin \alpha} + \sqrt{1 - \sin \alpha} = \sqrt{2}\left(\cos\dfrac{\alpha}{2} + \sin\dfrac{\alpha}{2}\right)1+sinα
+1−sinα
=2
(cos2α+sin2α)Suy ra:
P=2sinα2(cosα2+sinα2)=2sinα2cosα2+2sin2α2P = 2\sin\dfrac{\alpha}{2}(\cos\dfrac{\alpha}{2} + \sin\dfrac{\alpha}{2}) = 2\sin\dfrac{\alpha}{2}\cos\dfrac{\alpha}{2} + 2\sin^2\dfrac{\alpha}{2}P=2sin2α(cos2α+sin2α)=2sin2αcos2α+2sin22α ⇒P=sinα+1−cosα\Rightarrow P = \sin \alpha + 1 - \cos \alpha⇒P=sinα+1−cosα Thay x=cosα=−12017⇒sinα=1−x2=1−120172x = \cos \alpha = -\dfrac{1}{2017} \Rightarrow \sin \alpha = \sqrt{1 - x^2} = \sqrt{1 - \dfrac{1}{2017^2}}x=cosα=−20171⇒sinα=1−x2
=1−201721
.
P=1−120172+1−(−12017)P = \sqrt{1 - \dfrac{1}{2017^2}} + 1 - \left(-\dfrac{1}{2017}\right)P=1−201721
+1−(−20171) P=1+12017+1−120172P = 1 + \dfrac{1}{2017} + \sqrt{1 - \dfrac{1}{2017^2}}P=1+20171+1−201721
Đáp số:
P=1+12017+1−120172\boxed{P = 1 + \dfrac{1}{2017} + \sqrt{1 - \dfrac{1}{2017^2}}}P=1+20171+1−201721
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
11 giờ trước
Top thành viên trả lời