gawyysgug khi

Bài 3. Mẹ bạn Hải gửi vào ngân hang 120 triều đồng với lãi suất 0,45 % /năm với kì hạn
rotate image
thumb up 0
thumb down
Trả lời câu hỏi của Hồng Nhung Phạm Thị
  • Câu trả lời phải chính xác, đầy đủ dựa trên kiến thức xác thực:
    • ✔ Đối với câu hỏi trắc nghiệm: Đưa đáp án lựa chọn + giải thích lý do chọn đáp án.
    • ✔ Đối với câu hỏi tự luận: Đưa lời giải và đáp án cho câu hỏi.
    • ✔ Đối với câu hỏi trả lời ngắn: Đưa ra đáp án + giải thích lý do.
    • ✔ Chấp nhận sử dụng ảnh do thành viên viết tay, ảnh cần rõ nét, không bị mờ, vỡ ảnh.
  • Sử dụng ngôn ngữ rõ ràng, dễ hiểu.
  • Tránh đưa ra các ý kiến cá nhân mang tính chất chủ quan.
  • Nếu sử dụng thông tin từ nguồn khác, phải trích dẫn nguồn đầy đủ và chính xác.
  • Tuyệt đối không được sao chép các thông tin từ các trang khác, từ AI hoặc chatGPT.
CÂU TRẢ LỜI
avatar
Timi

06/11/2025

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Bài 3: a) Số tiền lãi sau một năm mẹ Hải nhận được là: \[ 120 \times 0,45\% = 120 \times \frac{0,45}{100} = 120 \times 0,0045 = 0,54 \text{ triệu đồng} \] Số tiền cả gốc và lãi sau một năm mẹ Hải rút về là: \[ 120 + 0,54 = 120,54 \text{ triệu đồng} \] b) Số tiền mẹ Hải dùng để mua xe máy là: \[ 120,54 \times \frac{1}{9} = 13,4 \text{ triệu đồng} \] Số tiền còn lại của mẹ Hải sau khi mua xe máy là: \[ 120,54 - 13,4 = 107,14 \text{ triệu đồng} \] Đáp số: a) 120,54 triệu đồng b) 107,14 triệu đồng Bài 4: Để giải bài toán này, chúng ta cần xác định số đo của góc \(\widehat{bOn}\) khi biết rằng On là tia phân giác của \(\widehat{aOz}\). 1. Xác định số đo của \(\widehat{aOz}\): Vì \(\widehat{aOb}\) là góc bẹt, nên \(\widehat{aOb} = 180^\circ\). Do đó, \(\widehat{aOz} = \widehat{aOb} - \widehat{bOz} = 180^\circ - 100^\circ = 80^\circ\). 2. Tính số đo của \(\widehat{aOn}\): Vì On là tia phân giác của \(\widehat{aOz}\), nên \(\widehat{aOn} = \frac{1}{2} \times \widehat{aOz} = \frac{1}{2} \times 80^\circ = 40^\circ\). 3. Tính số đo của \(\widehat{bOn}\): Ta có \(\widehat{bOn} = \widehat{bOz} - \widehat{aOn} = 100^\circ - 40^\circ = 60^\circ\). Vậy, số đo của \(\widehat{bOn}\) là \(60^\circ\). Bài 5: Để giải bài toán này, chúng ta cần tính diện tích toàn phần và thể tích của hình hộp chữ nhật. Hình hộp chữ nhật có các cạnh bên là chiều dài, chiều rộng và chiều cao. a) Tính diện tích toàn phần của hình hộp chữ nhật: Diện tích toàn phần của hình hộp chữ nhật được tính bằng tổng diện tích của tất cả các mặt. Hình hộp chữ nhật có 6 mặt, trong đó có 3 cặp mặt đối diện bằng nhau. - Diện tích của mặt đáy (hình chữ nhật) là: \(6 \times 4 = 24 \, \text{cm}^2\). - Diện tích của mặt bên (có kích thước 6cm và 7cm) là: \(6 \times 7 = 42 \, \text{cm}^2\). - Diện tích của mặt bên (có kích thước 4cm và 7cm) là: \(4 \times 7 = 28 \, \text{cm}^2\). Vì mỗi cặp mặt có 2 mặt giống nhau, nên diện tích toàn phần là: \[ 2 \times (24 + 42 + 28) = 2 \times 94 = 188 \, \text{cm}^2. \] Vậy, diện tích toàn phần của hình hộp chữ nhật là \(188 \, \text{cm}^2\). b) Tính thể tích của hình hộp chữ nhật: Thể tích của hình hộp chữ nhật được tính bằng tích của chiều dài, chiều rộng và chiều cao. - Chiều dài đáy: 6cm - Chiều rộng đáy: 4cm - Chiều cao: 7cm Thể tích là: \[ 6 \times 4 \times 7 = 168 \, \text{cm}^3. \] Vậy, thể tích của hình hộp chữ nhật là \(168 \, \text{cm}^3\). Bài 6: Để tính diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, ta cần thực hiện các bước sau: 1. Tính diện tích đáy Đáy của hình lăng trụ là một tam giác vuông với hai cạnh góc vuông có độ dài lần lượt là 3 cm và 4 cm. Diện tích của tam giác vuông được tính bằng công thức: \[ S_{\text{đáy}} = \frac{1}{2} \times \text{cạnh góc vuông thứ nhất} \times \text{cạnh góc vuông thứ hai} \] Thay số vào, ta có: \[ S_{\text{đáy}} = \frac{1}{2} \times 3 \times 4 = 6 \, \text{cm}^2 \] 2. Tính diện tích xung quanh Diện tích xung quanh của hình lăng trụ đứng được tính bằng chu vi của đáy nhân với chiều cao của lăng trụ. Chu vi của tam giác vuông là tổng độ dài ba cạnh: \[ C_{\text{đáy}} = 3 + 4 + 5 = 12 \, \text{cm} \] Diện tích xung quanh là: \[ S_{\text{xung quanh}} = C_{\text{đáy}} \times \text{chiều cao} = 12 \times 6 = 72 \, \text{cm}^2 \] 3. Tính thể tích Thể tích của hình lăng trụ đứng được tính bằng diện tích đáy nhân với chiều cao: \[ V = S_{\text{đáy}} \times \text{chiều cao} = 6 \times 6 = 36 \, \text{cm}^3 \] Kết luận - Diện tích xung quanh của hình lăng trụ đứng là \(72 \, \text{cm}^2\). - Thể tích của hình lăng trụ đứng là \(36 \, \text{cm}^3\). Bài 7: Để tính chiều cao của hình lăng trụ đứng tứ giác, ta cần sử dụng công thức tính diện tích xung quanh của hình lăng trụ. Diện tích xung quanh của hình lăng trụ đứng được tính bằng công thức: \[ S_{xq} = P \times h \] Trong đó: - \( S_{xq} \) là diện tích xung quanh của hình lăng trụ. - \( P \) là chu vi đáy của hình lăng trụ. - \( h \) là chiều cao của hình lăng trụ. Theo đề bài, ta có: - Diện tích xung quanh \( S_{xq} = 450 \, \text{cm}^2 \). - Chu vi đáy \( P = 50 \, \text{cm} \). Thay các giá trị này vào công thức, ta có: \[ 450 = 50 \times h \] Để tìm chiều cao \( h \), ta chia cả hai vế của phương trình cho 50: \[ h = \frac{450}{50} \] \[ h = 9 \, \text{cm} \] Vậy, chiều cao của hình lăng trụ đứng tứ giác là 9 cm. Bài 8: Giá của chiếc xe máy sau khi giảm 5% so với giá niêm yết là: \[ 45\,000\,000 - 45\,000\,000 \times \frac{5}{100} = 45\,000\,000 - 2\,250\,000 = 42\,750\,000 \text{ (đồng)} \] Giá của chiếc xe máy sau khi giảm thêm 3% so với giá đã giảm lần thứ nhất là: \[ 42\,750\,000 - 42\,750\,000 \times \frac{3}{100} = 42\,750\,000 - 1\,282\,500 = 41\,467\,500 \text{ (đồng)} \] Vậy khách hàng phải trả 41 467 500 đồng cho chiếc xe máy đó sau 2 lần giảm giá.
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận
avatar
level icon
Hương Trà

06/11/2025

bài 3

Cách tính tiền lãi có kì hạn là:

Số tiền lãi = Số tiền gửi × lãi suất (%/năm) × số tháng gửi : 12.

Số tiền lãi mẹ bạn Bình nhận được sau năm đầu tiên là:

120 000 000 . 7% . 12/12 = 8 400 000 (đồng).

Số tiền lãi mẹ bạn Bình nhận được sau năm thứ hai là:

(120 000 000 + 8 400 000) . 7% . 12/12 = 8 988 000 (đồng).

Số tiền lãi mẹ bạn Bình nhận được sau hai năm là:

8 400 000 + 8 988 000 = 17 388 000 (đồng).

Vậy số tiền lãi mẹ bạn Bình nhận được sau hai năm là: 17 388 000 đồng.

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
location.svg Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Đào Trường Giang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved