

06/01/2026
06/01/2026
Problem Statement
In the $Oxyz$ space, given two vectors $\vec{a} = (-2; 1; 2)$ and $\vec{b} = (1; 1; -1)$.
Solutions
a) Magnitude of the vectors
The magnitude of a vector $\vec{u} = (x; y; z)$ is calculated as $|\vec{u}| = \sqrt{x^2 + y^2 + z^2}$.
b) Dot product of the two vectors
The dot product of $\vec{a} = (x_1; y_1; z_1)$ and $\vec{b} = (x_2; y_2; z_2)$ is $x_1x_2 + y_1y_2 + z_1z_2$.
$\vec{a} \cdot \vec{b} = (-2 \cdot 1) + (1 \cdot 1) + (2 \cdot -1)$
$\vec{a} \cdot \vec{b} = -2 + 1 - 2 = -3$
c) Angle between the two vectors
The cosine of the angle $\theta$ between two vectors is given by the formula:
$\cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$
Substituting our values:
$\cos(\theta) = \frac{-3}{3 \cdot \sqrt{3}} = \frac{-1}{\sqrt{3}}$
To find the angle:
$\theta = \arccos\left(\frac{-1}{\sqrt{3}}\right) \approx 125.26^\circ$
Rounding to the first decimal place:
$\theta \approx 125.3^\circ$
Summary of Results
ParameterValue**Magnitude $\vec{a}**Magnitude $\vec{b}Dot Product $\vec{a} \cdot \vec{b}$$-3$Angle $(\vec{a}, \vec{b})$$125.3^\circ$
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
07/01/2026
07/01/2026
07/01/2026
07/01/2026
Top thành viên trả lời