

25/02/2025
25/02/2025
a) Vì MA, MB là tiếp tuyến của (O)
⇒ ˆMAO=ˆMBO=90∘
Tứ giác AOBM có ˆMAO+ˆMBO=90∘+90∘=180∘
⇒ A, O, B, M thuộc đường tròn đường kính OM.
⇒ AOBM nội tiếp đường tròn đường kính OM.
Tâm G là trung điểm OM
b. Vì MA là tiếp tuyến của (O)
⇒ ˆMAC=ˆMDA (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung AC)
Lại có ˆMchung.
Do đó, ΔMAC ∽ ΔMDA(g.g)
⇒ MAMD=MCMA
⇒ MA2 = MC.MD.
c) Vì I là trung điểm CD ⇒ OI ⊥ CD
⇒ OI ⊥ MI
⇒ I thuộc đường tròn đường kính OM
⇒ I ∈ (G)
⇒ M, A, O, I, B ∈ (G).
d) Vì MA, MB là tiếp tuyến của (O)
Nên MA = MB, MO là phân giác ˆAMB
⇒ ΔMAB có MO vừa là phân giác vừa là đường cao.
⇒ MO ⊥ AB
Áp dụng hệ thức lượng vào ΔAMO đường cao AH có:
⇒ MA2 = MH.MO (kết hợp b)
⇒ MH.MO = MC.MD
⇒ MCMO=MHMD
Xét ΔMCH và ΔMOD có:
MCMO=MHMD
ˆMchung
Do đó, ΔMCH ∽ ΔMOD (c.g.c).
⇒ ˆMHC=ˆMDO=ˆCDO
⇒ CHOD nội tiếp
e) Gọi CD ∩ AB = F
⇒ ˆAFI=ˆABE (vì CD // BE và hai góc ở vị trí đồng vị)
Ta có: A, M, B, O, I ∈ (G)
⇒ ˆAIC=ˆAIM=ˆAOM=12ˆAOB=ˆAEB
⇒ ˆAIF=ˆAEB
⇒ ΔAIF ∽ ΔAEB (g.g).
⇒ ˆIAF=ˆEAB=ˆEAF
⇒ A, I, E thẳng hàng.
uki
25/02/2025
nguyn_trn_thien cho mình cái hình đc ko
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
12/12/2025
Top thành viên trả lời