Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
1. Công thức tổng của dãy số hình thành từ phép cộng liên tiếp là: S = n/2 * (a1 + an), với n là số lượng số trong dãy, a1 là số đầu tiên và an là số cuối cùng.
Với dãy số 1+2+3+...+97+98, ta có n=98, a1=1, an=98.
Thay vào công thức, ta được: S = 98/2 * (1 + 98) = 49 * 99 = 4851.
2. Dãy số 1+3+5+...+97+99 là dãy số lẻ liên tiếp từ 1 đến 99. Số lượng số trong dãy là 50 (từ 1 đến 99 có 100 số, nhưng chỉ lấy mỗi số lẻ nên ta chia đôi). Vì vậy, n=50, a1=1, an=99.
Thay vào công thức, ta được: S = 50/2 * (1 + 99) = 25 * 100 = 2500.
3. Dãy số 1+4+7+...+106+109 không phải là dãy số liên tiếp, nhưng nó là dãy số cấp số cộng với công sai là 3. Công thức tổng của dãy số cấp số cộng là: S = n/2 * (2*a1 + (n-1)*d), với n là số lượng số trong dãy, a1 là số đầu tiên, d là công sai.
Để tìm n, ta sử dụng công thức: n = (an - a1)/d + 1. Trong trường hợp này, an=109, a1=1, d=3. Thay vào công thức, ta được: n = (109 - 1)/3 + 1 = 37.
Thay n, a1 và d vào công thức tổng, ta được: S = 37/2 * (2*1 + (37-1)*3) = 18.5 * (2 + 108) = 2035.
$\displaystyle 1+2+3+...+97+98$
Số số hạng là $\displaystyle \frac{98-1}{1} +1=98\ ($số$\displaystyle )$
Tổng $\displaystyle =\frac{( 98+1) \times 98}{2} =4851$
$\displaystyle 1+3+5+...+97+99$
Số số hạng là $\displaystyle \frac{99-1}{2} +1=50\ ($số$\displaystyle )$
Tổng $\displaystyle =\frac{( 99+1) \times 50}{2} =2500$
$\displaystyle 1+4+7+...+106+109$
Số số hạng là $\displaystyle \frac{109-1}{3} +1=37\ ($số$\displaystyle )$
Tổng $\displaystyle =\frac{( 109+1) \times 37}{2} =2035$
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5(0 đánh giá)
0
0 bình luận
Bình luận
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019
Email: info@fqa.vn
Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.