23/04/2024


23/04/2024
23/04/2024
$\displaystyle \begin{array}{{>{\displaystyle}l}}
A=\frac{1}{2} .\frac{3}{4} .\frac{5}{6} .....\frac{2021}{2022} .\frac{2023}{2024}\\
A^{2} =\left(\frac{1}{2} .\frac{3}{4} .\frac{5}{6} .....\frac{2021}{2022} .\frac{2023}{2024}\right) .\left(\frac{1}{2} .\frac{3}{4} .\frac{5}{6} .....\frac{2021}{2022} .\frac{2023}{2024}\right)
\end{array}$
Nhận xét
$\displaystyle \begin{array}{{>{\displaystyle}l}}
\frac{1}{2} < \frac{2}{3}\\
\frac{3}{4} < \frac{4}{5}\\
\frac{5}{6} < \frac{6}{7}\\
.........\\
\frac{2023}{2024} < \frac{2024}{2025}
\end{array}$
Suy ra
$\displaystyle \frac{1}{2} .\frac{3}{4} .\frac{5}{6} .....\frac{2021}{2022} .\frac{2023}{2024} < \frac{2}{3} .\frac{4}{5} .\frac{6}{7} .....\frac{2024}{2025}$
Suy ra
$\displaystyle \left(\frac{1}{2} .\frac{3}{4} .\frac{5}{6} .....\frac{2021}{2022} .\frac{2023}{2024}\right) .\left(\frac{1}{2} .\frac{3}{4} .\frac{5}{6} .....\frac{2021}{2022} .\frac{2023}{2024}\right) < (\left(\frac{1}{2} .\frac{3}{4} .\frac{5}{6} .....\frac{2021}{2022} .\frac{2023}{2024}\right) .\left(\frac{2}{3} .\frac{4}{5} .\frac{6}{7} ....\frac{2024}{2025}\right)$
Suy ra $\displaystyle A^{2} < \frac{1}{2} .\frac{2}{3} .\frac{3}{4} .\frac{4}{5} .....\frac{2023}{2024} .\frac{2024}{2025}$
Suy ra $\displaystyle A^{2} < \frac{1}{2025}$
Tiếp tục ta có
$\displaystyle \begin{array}{{>{\displaystyle}l}}
\frac{2}{3} < \frac{3}{4}\\
\frac{4}{5} < \frac{5}{6}\\
........\\
\frac{2022}{2023} < \frac{2023}{2024}
\end{array}$
Suy ra
$\displaystyle \frac{3}{4} .\frac{5}{6} .....\frac{2021}{2022} .\frac{2023}{2024} >\frac{2}{3} .\frac{4}{5} .....\frac{2022}{2023}$
Suy ra
$\displaystyle \left(\frac{1}{2} .\frac{3}{4} .\frac{5}{6} .....\frac{2021}{2022} .\frac{2023}{2024}\right) .\left(\frac{1}{2} .\frac{3}{4} .\frac{5}{6} .....\frac{2021}{2022} .\frac{2023}{2024}\right) >\frac{1}{2} .\frac{1}{2} .\frac{2}{3} .\frac{3}{4} .\frac{4}{5} .....\frac{2022}{2023} .\frac{2023}{2024}$
Suy ra $\displaystyle A^{2} >\frac{1}{2} .\frac{1}{2024} =\frac{1}{4048}$
Vậy $\displaystyle \frac{1}{4048} < A^{2} < \frac{1}{2025}$
Nguyễn Thị Khánh Chi
23/04/2024
duongnguyen-thuy42 em cảm ơn ạ
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
Top thành viên trả lời