Bài 2.
a) \( x + 8,5 = 21,7 \)
Chuyển 8,5 sang phía bên phải:
\[ x = 21,7 - 8,5 \]
\[ x = 13,2 \]
b) \( \frac{3}{5}x - \frac{1}{3} = \frac{4}{3} \)
Chuyển \(- \frac{1}{3}\) sang phía bên phải:
\[ \frac{3}{5}x = \frac{4}{3} + \frac{1}{3} \]
\[ \frac{3}{5}x = \frac{5}{3} \]
Nhân cả hai vế với \(\frac{5}{3}\):
\[ x = \frac{5}{3} \times \frac{5}{3} \]
\[ x = \frac{25}{9} \]
c) \( x - \frac{3}{10} = \frac{7}{15} \times \frac{3}{5} \)
Tính \(\frac{7}{15} \times \frac{3}{5}\):
\[ \frac{7}{15} \times \frac{3}{5} = \frac{21}{75} = \frac{7}{25} \]
Chuyển \(- \frac{3}{10}\) sang phía bên phải:
\[ x = \frac{7}{25} + \frac{3}{10} \]
Quy đồng mẫu số:
\[ \frac{7}{25} = \frac{14}{50}, \quad \frac{3}{10} = \frac{15}{50} \]
\[ x = \frac{14}{50} + \frac{15}{50} \]
\[ x = \frac{29}{50} \]
d) \( \frac{1}{2} - \frac{1}{2}:x = \frac{3}{4} \)
Chuyển \(\frac{1}{2}\) sang phía bên phải:
\[ - \frac{1}{2}:x = \frac{3}{4} - \frac{1}{2} \]
\[ - \frac{1}{2}:x = \frac{1}{4} \]
Nhân cả hai vế với \(-2\):
\[ \frac{1}{x} = -\frac{1}{2} \times \frac{1}{4} \]
\[ \frac{1}{x} = -\frac{1}{8} \]
Do đó:
\[ x = -8 \]
e) \( \frac{x+1}{3} = \frac{25}{-5} \)
Tính \(\frac{25}{-5}\):
\[ \frac{25}{-5} = -5 \]
Nhân cả hai vế với 3:
\[ x + 1 = -5 \times 3 \]
\[ x + 1 = -15 \]
Chuyển 1 sang phía bên phải:
\[ x = -15 - 1 \]
\[ x = -16 \]
f) \( \frac{2}{3}x - \frac{1}{2}x = \frac{5}{12} \)
Quy đồng mẫu số:
\[ \frac{2}{3}x = \frac{4}{6}x, \quad \frac{1}{2}x = \frac{3}{6}x \]
\[ \frac{4}{6}x - \frac{3}{6}x = \frac{5}{12} \]
\[ \frac{1}{6}x = \frac{5}{12} \]
Nhân cả hai vế với 6:
\[ x = \frac{5}{12} \times 6 \]
\[ x = \frac{5}{2} \]
Đáp số:
a) \( x = 13,2 \)
b) \( x = \frac{25}{9} \)
c) \( x = \frac{29}{50} \)
d) \( x = -8 \)
e) \( x = -16 \)
f) \( x = \frac{5}{2} \)
Bài 3:
Để giải bài toán này, chúng ta sẽ thực hiện các bước sau:
1. Tính diện tích của mảnh vườn hình chữ nhật.
2. Tính số lượng dâu tây thu được dựa trên diện tích và tỷ lệ đã cho.
Bước 1: Tính diện tích của mảnh vườn hình chữ nhật
Chiều rộng của mảnh vườn là:
\[ 72,5 - 25,7 = 46,8 \text{m} \]
Diện tích của mảnh vườn là:
\[ 72,5 \times 46,8 = 3387 \text{m}^2 \]
Bước 2: Tính số lượng dâu tây thu được
Trung bình cứ 9m² thì thu được 3,5kg dâu tây. Do đó, trên 1m² thu được:
\[ \frac{3,5}{9} = 0,3889 \text{kg} \]
Tổng số lượng dâu tây thu được trên toàn bộ mảnh vườn là:
\[ 3387 \times 0,3889 = 1312,5 \text{kg} \]
Vậy, trên mảnh vườn đó người ta thu được tất cả 1312,5 kg dâu tây.
Đáp số: 1312,5 kg dâu tây.
Bài 4:
a) Diện tích xung quanh của bể bơi là:
(25,5 + 16,8) × 2 × 1,8 = 153,48 (m^2)
Diện tích đáy của bể bơi là:
25,5 × 16,8 = 428,4 (m^2)
Diện tích gạch cần lát là:
153,48 + 428,4 = 581,88 (m^2)
b) Số tiền phải trả cho nhân công lát gạch là:
120000 × 581,88 = 69825600 (đồng)
Đáp số: a) 581,88 m^2; b) 69825600 đồng.
Bài 5:
a) Vẽ hình theo yêu cầu đề bài:
Các tia có trong hình là: tia Ax, tia Ay, tia Bx, tia By, tia Cx, tia Cy.
b) Tính độ dài đoạn thẳng BC:
Vì điểm B nằm giữa hai điểm A và C nên ta có:
BC = AC - AB
Thay các giá trị đã biết vào, ta được:
BC = 9 cm - 4 cm = 5 cm
Vậy độ dài đoạn thẳng BC là 5 cm.
c) Gọi I là trung điểm của đoạn thẳng AB. Tính độ dài đoạn thẳng IC:
Vì I là trung điểm của đoạn thẳng AB nên ta có:
AI = IB = $\frac{1}{2}$ AB
Thay giá trị của AB vào, ta được:
AI = IB = $\frac{1}{2}$ × 4 cm = 2 cm
Vì điểm B nằm giữa hai điểm A và C nên ta có:
IC = IB + BC
Thay các giá trị đã biết vào, ta được:
IC = 2 cm + 5 cm = 7 cm
Vậy độ dài đoạn thẳng IC là 7 cm.