21/03/2025


21/03/2025
21/03/2025
Câu 3:
$\displaystyle \begin{array}{{>{\displaystyle}l}}
B=\frac{1}{2019} +\frac{2}{2018} +\frac{3}{2017} +\frac{4}{2016} +...+\frac{2019}{1}\\
=\frac{1}{2019} +\frac{2}{2018} +\frac{3}{2017} +\frac{4}{2016} +...+\frac{2018}{2} +( 1+1+...+1)\\
=\left(\frac{1}{2019} +1\right) +\left(\frac{2}{2018} +1\right) +\left(\frac{3}{2017} +1\right) +...+\left(\frac{2018}{2} +1\right) +1\\
=\frac{2020}{2019} +\frac{2020}{2018} +\frac{2020}{2017} +...+\frac{2020}{2} +\frac{2020}{2020}\\
=2020.\left(\frac{1}{2} +\frac{1}{3} +...+\frac{1}{2017} +\frac{1}{2018} +\frac{1}{2019}\right)\\
=2020.A\\
\Longrightarrow \frac{A}{B} =\frac{1}{2020}
\end{array}$
Câu 4:
$\displaystyle \begin{array}{{>{\displaystyle}l}}
A=\frac{1}{1.2} +\frac{1}{3.4} +\frac{1}{5.6} +...+\frac{1}{99.100}\\
=1-\frac{1}{2} +\frac{1}{3} -\frac{1}{4} +\frac{1}{5} -\frac{1}{6} +...+\frac{1}{99} -\frac{1}{100}\\
=\left( 1+\frac{1}{3} +\frac{1}{5} +...+\frac{1}{99}\right) -\left(\frac{1}{2} +\frac{1}{4} +\frac{1}{6} +...+\frac{1}{100}\right)\\
=\left( 1+\frac{1}{2} +\frac{1}{3} +\frac{1}{4} +\frac{1}{5} +...+\frac{1}{99} +\frac{1}{100}\right) -2.\left(\frac{1}{2} +\frac{1}{4} +\frac{1}{6} +...+\frac{1}{100}\right)\\
=\left( 1+\frac{1}{2} +\frac{1}{3} +\frac{1}{4} +\frac{1}{5} +...+\frac{1}{99} +\frac{1}{100}\right) -\left( 1+\frac{1}{2} +\frac{1}{3} +...+\frac{1}{50}\right)\\
=\frac{1}{51} +\frac{1}{52} +\frac{1}{53} +...+\frac{1}{99} +\frac{1}{100}
\end{array}$
$\displaystyle \begin{array}{{>{\displaystyle}l}}
B=\frac{2021}{51} +\frac{2021}{52} +\frac{2021}{53} +...+\frac{2021}{100}\\
=2021.\left(\frac{1}{51} +\frac{1}{52} +\frac{1}{53} +...+\frac{1}{100}\right)\\
=2021.A\\
\Longrightarrow \frac{B}{A} =2021
\end{array}$
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
Top thành viên trả lời