Trong không gian cho ba điểm A, B, C
LG a
Xác định điểm \(G\) sao cho \(\overrightarrow {GA} + 2\overrightarrow {GB} - 2\overrightarrow {GC} = 0.\)
Phương pháp giải:
Biến đổi đẳng thức vector trong câu a) theo những điểm cố định và suy ra vị trí của điểm G.
Lời giải chi tiết:
Ta có
\(\begin{array}{l}
\,\,\,\,\,\,\,\overrightarrow {GA} + 2\overrightarrow {GB} - 2\overrightarrow {GC} = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {GA} + 2\left( {\overrightarrow {GB} - \overrightarrow {GC} } \right) = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {GA} + 2\overrightarrow {CB} = 0\\
\Leftrightarrow \overrightarrow {GA} = 2\overrightarrow {BC}
\end{array}\)
Gọi \(D\) là điểm mà \(\overrightarrow {DC} = 2\overrightarrow {BC} \) tức là điểm \(B\) là trung điểm của \(CD\) \( \Rightarrow \overrightarrow {GA} = \overrightarrow {DC} \)
Vậy \(G\) là đỉnh thứ tư của hình bình hành \(ACDG\).
LG b
Tìm tập hợp các điểm \(M\) sao cho \(MA^2 + 2MB^2 - 2MC^2 = k^2\), với \(k\) là hằng số.
Phương pháp giải:
Sử dụng công thức ba điểm, chèn điểm G vào tất cả các vector \(\overrightarrow {MA} ;\overrightarrow {MB} ;\overrightarrow {MC} \), biến đổi và kết luận.
Lời giải chi tiết:
Gọi \(G\) là điểm trong câu a): \(\overrightarrow {GA} + 2\overrightarrow {GB} - 2\overrightarrow {GC} = \overrightarrow 0 \).
Ta có: \(M{A^2} = {\overrightarrow {MA} ^2}= {(\overrightarrow {MG} + \overrightarrow {GA} )^2}\)
\(= M{G^2} + G{A^2} + 2\overrightarrow {MG} .\overrightarrow {GA} \);
\(M{B^2} = {\overrightarrow {MB} ^2} = {(\overrightarrow {MG} + \overrightarrow {GB} )^2}\)
\(= M{G^2} + G{B^2} + 2\overrightarrow {MG} .\overrightarrow {GB} \);
\(M{C^2} = {\overrightarrow {MC} ^2} = {(\overrightarrow {MG} + \overrightarrow {GC} )^2} \)
\(= M{G^2} + G{C^2} + 2\overrightarrow {MG} .\overrightarrow {GC} \).
Từ đó \(MA^2 +2 MB^2 -2 MC^2 = k^2\)
\( \Leftrightarrow M{G^2} + G{A^2} + 2G{B^2} - 2G{C^2} \)
\(+ 2\overrightarrow {MG} (\overrightarrow {GA} + 2\overrightarrow {GB} - 2\overrightarrow {GC} ) = {k^2}\)
\( \Leftrightarrow M{G^2} = {k^2} - (G{A^2} + 2G{B^2} - 2G{C^2})\)
(Vì \(\overrightarrow {GA} + 2\overrightarrow {GB} - 2\overrightarrow {GC} = \overrightarrow 0 \)).
Do vậy:
Nếu \(k^2 - (GA^2 + 2GB^2 - 2GC^2) = r^2 > 0\) thì tập hợp các điểm M là mặt cầu tâm G bán kính r.
Nếu \(k^2 - (GA^2 + 2GB^2 - 2GC^2) = r^2 =0\) thì tập hợp M chính là điểm G.
Nếu \(k^2 - (GA^2 + 2GB^2 - 2GC^2) = r^2 < 0\) thì tập hợp các điểm M chính là tập rỗng.
Unit 6. Future Jobs
Bài 21. Đặc điểm nền nông nghiệp nước ta
CHƯƠNG VII. HẠT NHÂN NGUYÊN TỬ
CHƯƠNG V. SÓNG ÁNH SÁNG
Đề thi học kì 2