Bài 14 trang 101 SGK Hình học 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Trong không gian cho ba điểm A, B, C

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Xác định điểm \(G\) sao cho \(\overrightarrow {GA}  + 2\overrightarrow {GB}  - 2\overrightarrow {GC}  = 0.\)

Phương pháp giải:

Biến đổi đẳng thức vector trong câu a) theo những điểm cố định và suy ra vị trí của điểm G.

Lời giải chi tiết:

Ta có

\(\begin{array}{l}
\,\,\,\,\,\,\,\overrightarrow {GA} + 2\overrightarrow {GB} - 2\overrightarrow {GC} = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {GA} + 2\left( {\overrightarrow {GB} - \overrightarrow {GC} } \right) = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {GA} + 2\overrightarrow {CB} = 0\\
\Leftrightarrow \overrightarrow {GA} = 2\overrightarrow {BC} 
\end{array}\)

Gọi \(D\) là điểm mà \(\overrightarrow {DC}  = 2\overrightarrow {BC} \) tức là điểm \(B\) là trung điểm của \(CD\) \( \Rightarrow \overrightarrow {GA}  = \overrightarrow {DC} \)

Vậy \(G\) là đỉnh thứ tư của hình bình hành \(ACDG\).

LG b

Tìm tập hợp các điểm \(M\) sao cho \(MA^2 + 2MB^2 - 2MC^2 = k^2\), với \(k\) là hằng số.

Phương pháp giải:

Sử dụng công thức ba điểm, chèn điểm G vào tất cả các vector \(\overrightarrow {MA} ;\overrightarrow {MB} ;\overrightarrow {MC} \), biến đổi và kết luận.

Lời giải chi tiết:

Gọi \(G\) là điểm trong câu a): \(\overrightarrow {GA}  + 2\overrightarrow {GB}  - 2\overrightarrow {GC}  = \overrightarrow 0 \).

Ta có: \(M{A^2} = {\overrightarrow {MA} ^2}= {(\overrightarrow {MG}  + \overrightarrow {GA} )^2}\)

\(= M{G^2} + G{A^2} + 2\overrightarrow {MG} .\overrightarrow {GA} \);

\(M{B^2} = {\overrightarrow {MB} ^2} = {(\overrightarrow {MG}  + \overrightarrow {GB} )^2}\)

\(= M{G^2} + G{B^2} + 2\overrightarrow {MG} .\overrightarrow {GB} \);

\(M{C^2} = {\overrightarrow {MC} ^2} = {(\overrightarrow {MG}  + \overrightarrow {GC} )^2} \)

\(= M{G^2} + G{C^2} + 2\overrightarrow {MG} .\overrightarrow {GC} \).

Từ đó \(MA^2 +2 MB^2 -2 MC^2 = k^2\)

\( \Leftrightarrow M{G^2} + G{A^2} + 2G{B^2} - 2G{C^2} \)

\(+ 2\overrightarrow {MG} (\overrightarrow {GA}  + 2\overrightarrow {GB}  - 2\overrightarrow {GC} ) = {k^2}\)

\( \Leftrightarrow M{G^2} = {k^2} - (G{A^2} + 2G{B^2} - 2G{C^2})\) 

(Vì \(\overrightarrow {GA}  + 2\overrightarrow {GB}  - 2\overrightarrow {GC}  = \overrightarrow 0 \)).

Do vậy:

Nếu \(k^2 - (GA^2 + 2GB^2 - 2GC^2) = r^2 > 0\) thì tập hợp các điểm M là mặt cầu tâm G bán kính r.

Nếu \(k^2 - (GA^2 + 2GB^2 - 2GC^2) = r^2 =0\) thì tập hợp M chính là điểm G.

Nếu \(k^2 - (GA^2 + 2GB^2 - 2GC^2) = r^2 < 0\) thì tập hợp các điểm M chính là tập rỗng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved