Bài 2 trang 63 SGK Hình học lớp 11

Đề bài

Cho tứ diện \(ABCD\). Trên cạnh \(AB\) lấy một điểm \(M\). Cho \((α)\) là mặt phẳng qua \(M\), song song với hai đường thẳng \(AC\) và \(BD\)

a) Tìm giao tuyến của \((α)\) với các mặt tứ diện

b) Thiết diện của tứ diện cắt bởi mặt phẳng \((α)\) là hình gì?

Phương pháp giải - Xem chi tiết

Vận dụng định lí 2:

Cho đường thẳng \(a\) song song với mặt phẳng \(\alpha\). Nếu mặt phẳng \(\beta\) chứa \(a\) và cắt \(\alpha\) theo giao tuyến \(b\) thì \(b\) song song với \(a\).

Lời giải chi tiết

a) Ta có:

+ \((α) // AC\)

⇒ Giao tuyến của \((α)\) và \((ABC)\) là đường thẳng song song với \(AC.\)

Mà \(M ∈ (ABC) ∩ (α).\)

\(⇒ (ABC) ∩ (α) = MN\) là đường thẳng qua \(M,\) song song với \(AC (N ∈ BC).\)

+ Tương tự \((α) ∩ (ABD) = MQ\) là đường thẳng qua \(M\) song song với \(BD (Q ∈ AD).\)

+ \((α) ∩ (BCD) = NP\) là đường thẳng qua \(N\) song song với \(BD (P ∈ CD).\)

+ \((α) ∩ (ACD) = QP.\)

b) Ta có: 

\(\left\{ \begin{array}{l}
\left( \alpha \right) \cap \left( {ABD} \right) = MQ\\
\left( \alpha \right) \cap \left( {ABC} \right) = MN\\
\left( \alpha \right) \cap \left( {ACD} \right) = PQ\\
\left( \alpha \right) \cap \left( {BCD} \right) = PN
\end{array} \right.\) nên thiết diện là tứ giác \(MNPQ.\)

\(\left\{ \begin{array}{l}
\left( \alpha \right) \cap \left( {ACD} \right) = PQ\\
AC//\left( \alpha \right)\\
AC \subset \left( {ACD} \right)
\end{array} \right. \Rightarrow PQ//AC\).

Mà \(MN//AC\) (câu a) nên \(MN//PQ.\)

Lại có: \(MQ//BD, NP//BD\) (câu a) nên \(MQ//NP.\)

Tứ giác \(MNPQ\) có hai cặp cạnh đối song song nên là hình bình hành.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved