Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho tam giác \(ABC\) có \(G\) là trọng tâm. Xác định ảnh của tam giác \(ABC\) qua phép tịnh tiến theo vectơ \(\overrightarrow{AG}\). Xác định điểm \(D\) sao cho phép tịnh tiến theo vectơ \(\overrightarrow{AG}\) biến \(D\) thành \(A.\)
Phương pháp giải - Xem chi tiết
Để tìm ảnh của tam giác \(ABC\) ta tìm ảnh của các đỉnh \(A, B,C\) ,bằng định nghĩa của phép tịnh tiến: \({T_{\overrightarrow v }}\left( M \right) = M' \Leftrightarrow \overrightarrow {MM'} = \overrightarrow v \)
Lời giải chi tiết
+) Gọi \(B', C'\) lần lượt là ảnh của \(B, C\) qua phép tịnh tiến theo véc tơ \(\overrightarrow{AG}\).
Nhận xét:
\(\begin{array}{l}
{T_{\overrightarrow {AG} }}\left( A \right) = G\\
{T_{\overrightarrow {AG} }}\left( B \right) = B' \Leftrightarrow \overrightarrow {BB'} = \overrightarrow {AG} \\
{T_{\overrightarrow {AG} }}\left( C \right) = C' \Leftrightarrow \overrightarrow {CC'} = \overrightarrow {AG}
\end{array}\)
Từ đó ta có cách dựng:
Dựng điểm \(B', C'\) sao cho \(\overrightarrow {BB'} = \overrightarrow {AG} \) và \(\overrightarrow {CC'} = \overrightarrow {AG} \)
Khi đó ta được ảnh của tam giác \(ABC\) qua \({T_{\overrightarrow {AG} }}\) là tam giác \(GB'C'\).
+) \({T_{\overrightarrow {AG} }}\left( D \right) = A \Leftrightarrow \overrightarrow {DA} = \overrightarrow {AG} \) \(\Leftrightarrow - \overrightarrow {AD} = \overrightarrow {AG} \Leftrightarrow \overrightarrow {AG} + \overrightarrow {AD} = \overrightarrow 0 \)
Do đó \(A\) là trung điểm của \(DG\) thì phép tịnh tiến theo vectơ \(\overrightarrow{AG}\) biến \(D\) thành \(A\) (hình vẽ).
Cách khác:
Cách trên ta sử dụng cách dựng trực tiếp, dưới đây ta trình bày cách dựng hình bằng cách đoán rồi chứng minh hình có được là hình cần tìm. Các em có thể tham khảo:
- Dựng hình bình hành \(ABB'G\) và \(ACC'G.\)
Khi đó ta có \(\overrightarrow{AG}\) = \(\overrightarrow{BB'}\) = \(\overrightarrow{CC'}\).
Suy ra \(T_{\vec{AG}} (A) = G\), \(T_{\vec{AG}} (B) = B'\), \(T_{\vec{AG}} (C)= C'\).
Do đó ảnh của tam giác \(ABC\) qua phép tịnh tiến theo vectơ \(\overrightarrow{AG}\) là tam giác \(GB'C'.\)
- Trên tia \(GA\) lấy điểm \(D\) sao cho \(A\) là trung điểm của \(GD.\)
Khi đó ta có \(\overrightarrow{DA}\) = \(\overrightarrow{AG}\). Do đó, \(T_{\vec{AG}} (D) = A\)
Bài 4. Thực hành: Tìm hiểu những cơ hội và thách thức của toàn cầu hóa đối với các nước đang phát triển - Tập bản đồ Địa lí 11
Chủ đề 2. Sóng
Unit 3: Global warming
Bài 12: Alkane
Bài 6. Tiết 2: Kinh tế Hoa Kì - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11