Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho tứ diện \(ABCD\). Gọi \(M, N\) lần lượt là trung đểm của các cạnh \(AB, CD\) và \(G\) là trung điểm của đoạn \(MN\)
a) Tìm giao điểm \(A'\) của đường thẳng \(AG\) và mặt phẳng \((BCD)\)
b) Qua \(M\) kẻ đường thẳng \(Mx\) song song với \(AA'\) và \(Mx\) cắt \((BCD)\) tại \(M'\). Chứng minh \(B, M', A'\) thẳng hàng và \(BM' = M'A' = A'N\).
c) Chứng minh \(GA = 3 GA'\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Trong \((ABN)\): Gọi \(A'=AG \cap BN\).
b) Sử dụng định lí đường trung bình của tam giác.
c) Sử dụng tính chất đường trung bình của tam giác.
Lời giải chi tiết
a) Có: \(MN \subset \left( {ABN} \right)\)
\(\begin{array}{*{20}{l}}
{ \Rightarrow {\rm{ }}G \in \left( {ABN} \right)}\\
{ \Rightarrow {\rm{ }}AG \subset \left( {ABN} \right).}
\end{array}\)
Trong \((ABN)\): Gọi \(A'=AG \cap BN\)
\( \Rightarrow A' \in BN \subset (BCD)\).
\( \Rightarrow A' \in (BCD) \Rightarrow A' = AG \cap (BCD)\)
b) Ta có: \(\left\{ \begin{array}{l}MM'//AA'\\AA' \subset \left( {ABN} \right)\\M \in AB \subset \left( {ABN} \right)\end{array} \right. \) \(\Rightarrow MM' \subset \left( {ABN} \right)\)
Suy ra \(\left\{ \begin{array}{l}M' \in \left( {ABN} \right)\\M' \in \left( {BCD} \right)\end{array} \right.\)
\( \Rightarrow M' \in \left( {ABN} \right) \cap \left( {BCD} \right) = BN\).
Mà \(A'\) cũng thuộc \(BN\) nên \(M',A',B\) thẳng hàng (cùng nằm trên \(BN\)).
*) Xét tam giác \(NMM'\) có:
+) \(G\) là trung điểm của \(NM\).
+) \(GA'//MM'\)
\(\Rightarrow A'\) là trung điểm của \(NM'\)
Xét tam giác \(BAA'\) có:
+) \(M \) là trung điểm của \(AB\)
+) \(MM'//AA'\)
\(\Rightarrow M'\) là trung điểm của \(BA'\)
Do đó: \(BM'=M'A'=A'N\).
c) Ta có \(\displaystyle MM'={1\over 2} AA'\)
\( \Rightarrow GA' = \frac{1}{2}MM' = \frac{1}{2}.\frac{1}{2}AA' = \frac{1}{4}AA' \)
\(\Rightarrow GA = AA' - GA' \) \(= AA' - \frac{1}{4}AA' = \frac{3}{4}AA'\)
\( \Rightarrow \dfrac{{GA'}}{{GA}} = \dfrac{{\dfrac{1}{4}AA'}}{{\dfrac{3}{4}AA'}} = \dfrac{1}{3} \) \(\Rightarrow GA = 3GA'\)
Chuyên đề 3. Một số yếu tố kĩ thuật
Chương 2. Nitrogen và sulfur
Chủ đề 1: Vai trò và tác dụng cơ bản của môn cầu lông đối với sự phát triển thể chất. Một số điều luật thi đấu cầu lông
Chủ đề 4. Sinh sản ở sinh vật
Chủ đề 2: Lạm phát, thất nghiệp
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11