Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho tứ diện \(OABC\) có ba cạnh \(OA, OB, OC\) đôi một vuông góc. Gọi \(H\) là chân đường vuông góc hạ từ \(O\) tới mặt phẳng \((ABC)\). Chứng minh rằng:
a) H là trực tâm của tam giác \(ABC\);
b) \(\dfrac{1}{OH^{2}}=\dfrac{1}{OA^{2}}+\dfrac{1}{OB^{2}}+\dfrac{1}{OC^{2}}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Chứng minh \(AB \bot CH;\,\,BC \bot AH\).
b) Sử dụng hệ thức lượng trong tam giác vuông.
Lời giải chi tiết
a) \(H\) là hình chiếu của \(O\) trên mp \((ABC)\) nên \(OH ⊥ (ABC) \Rightarrow OH ⊥ BC\).
Mặt khác: \(OA ⊥ OB\), \(OA ⊥ OC\)
\(\Rightarrow OA ⊥ (OBC) \Rightarrow OA ⊥ BC\)
\(\left\{ \begin{array}{l}
BC \bot OH\\
BC \bot OA\\
OA \cap OH = O
\end{array} \right.\) \( \Rightarrow BC \bot \left( {OAH} \right)\)
Mà \(AH \subset \left( {OAH} \right)\) \(\Rightarrow BC ⊥ AH\) (1)
Ta có: \(\left\{ \begin{array}{l}OB \bot OA\\OB \bot OC\end{array} \right. \Rightarrow OB \bot \left( {OAC} \right)\)
Mà \(AC \subset \left( {OAC} \right) \Rightarrow OB \bot AC\)
\(OH \bot \left( {ABC} \right) \Rightarrow OH \bot AC\)
Do đó \(\left\{ \begin{array}{l}OB \bot AC\\OH \bot AC\end{array} \right. \Rightarrow AC \bot \left( {OBH} \right)\) \( \Rightarrow AC \bot BH\) (2)
Từ (1) và (2) ta có tam giác \(ABC\) có
\(\left\{ \begin{array}{l}
AH \bot BC\\
BH \bot AC\\
AH \cap BH = H
\end{array} \right.\)
\(\Rightarrow H\) là trực tâm của tam giác \(ABC\).
b) Trong mặt phẳng \((ABC)\) gọi \(E = AH ∩ BC\)
\(\left\{ \begin{array}{l}
OH \bot \left( {ABC} \right)\\
AE \subset \left( {ABC} \right)
\end{array} \right. \Rightarrow OH \bot AE\)
Ta có: \(\left\{ \begin{array}{l}OA \bot \left( {OBC} \right)\\OE \subset \left( {OBC} \right)\end{array} \right. \Rightarrow OA \bot OE\) \( \Rightarrow \Delta OAE\) vuông tại \(O\) có đường cao \(OH\)
\( \Rightarrow \dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O{E^2}}}\) (hệ thức giữa cạnh và đường cao trong tam giác vuông \(OAE\))
Lại có: \(\left\{ \begin{array}{l}BC \bot \left( {OAH} \right)\\OE \subset \left( {OAH} \right)\end{array} \right. \Rightarrow BC \bot OE\)
Mà \(OB \bot OC\) nên \(\Delta OBC\) vuông tại \(O\) có \(OE\) là đường cao.
\( \Rightarrow \dfrac{1}{{O{E^2}}} = \dfrac{1}{{O{B^2}}} + \dfrac{1}{{O{C^2}}}\)
Vậy \(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O{E^2}}}\)\( = \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O{B^2}}} + \dfrac{1}{{O{C^2}}}\) (đpcm).
Nhận xét: Biểu thức này là mở rộng của công thức tính đường cao thuộc cạnh huyền của tam giác vuông: \(\dfrac{1}{h^{2}}=\dfrac{1}{b^{2}}+\dfrac{1}{c^{2}} .\)
Chủ đề 1. Giới thiệu chung về cơ khí chế tạo
Unit 12: Celebrations
Unit 4: Planet Earth
Bài 7: Tiết 3. Thực hành: Tìm hiểu về Liên minh châu Âu - Tập bản đồ Địa lí 11
Bài 1. Bảo vệ chủ quyền lãnh thổ, biên giới quốc gia nước Cộng hòa xã hội chủ nghĩa Việt Nam
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11