Đề bài
Tìm đạo hàm của các hàm số sau:
\(\begin{array}{l}
a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\
b)\,\,y = \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\
c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\
d)\,y = {\tan ^2}x - {\cot}{x^2}\\
e)\,\,y = \cos \dfrac{x}{{1 + x}}
\end{array}\)
Phương pháp giải - Xem chi tiết
Sử dụng các quy tắc tính đạo hàm của tích, thương, quy tắc tính đạo hàm hàm số hợp và bảng đạo hàm cơ bản.
Lời giải chi tiết
\(\begin{array}{l}
a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\y' = \left( {9 - 2x} \right)'\left( {2{x^3} - 9{x^2} + 1} \right) \\+ \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)'\\
= - 2\left( {2{x^3} - 9{x^2} + 1} \right) + \left( {9 - 2x} \right)\left( {6{x^2} - 18x} \right)\\
= - 4{x^3} + 18{x^2} - 2 + 54{x^2} - 162x - 12{x^3} + 36{x^2}\\
= - 16{x^3} + 108{x^2} - 162x - 2\\
b)\,\,y = \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\y' = \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)'\left( {7x - 3} \right) + \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)'\\
= \left( {6.\dfrac{1}{{2\sqrt x }} - \dfrac{{ - \left( {{x^2}} \right)'}}{{{{\left( {{x^2}} \right)}^2}}}} \right)\left( {7x - 3} \right) + \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right).7\\ = \left( {\dfrac{3}{{\sqrt x }} + \dfrac{{2x}}{{{x^4}}}} \right)\left( {7x - 3} \right) + 7\left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\\= \left( {\dfrac{3}{{\sqrt x }} + \dfrac{2}{{{x^3}}}} \right)\left( {7x - 3} \right) + 7\left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\\
= 21\sqrt x - \dfrac{9}{{\sqrt x }} + \dfrac{{14}}{{{x^2}}} - \dfrac{6}{{{x^3}}} + 42\sqrt x - \dfrac{7}{{{x^2}}}\\
= \dfrac{{ - 6}}{{{x^3}}} + \dfrac{7}{{{x^2}}} + 63\sqrt x - \dfrac{9}{{\sqrt x }}\\
c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\y' = \left( {x - 2} \right)'\sqrt {{x^2} + 1} + \left( {x - 2} \right)\left( {\sqrt {{x^2} + 1} } \right)'\\ = 1.\sqrt {{x^2} + 1} + \left( {x - 2} \right).\dfrac{{\left( {{x^2} + 1} \right)'}}{{2\sqrt {{x^2} + 1} }} \\= \sqrt {{x^2} + 1} + \left( {x - 2} \right).\dfrac{{2x}}{{2\sqrt {{x^2} + 1} }}\\
= \sqrt {{x^2} + 1} + \left( {x - 2} \right)\dfrac{x}{{\sqrt {{x^2} + 1} }}\\
= \dfrac{{{x^2} + 1 + {x^2} - 2x}}{{\sqrt {{x^2} + 1} }}\\
= \dfrac{{2{x^2} - 2x + 1}}{{\sqrt {{x^2} + 1} }}\\
d)\,y = {\tan ^2}x - \cot {x^2}\\y' = \left( {{{\tan }^2}x} \right)' - \left( {\cot {x^2}} \right)'\\ = 2\tan x.\left( {\tan x} \right)' - \left( {{x^2}} \right)'.\dfrac{{ - 1}}{{\sin ^2 {x^2}}}\\
= 2\tan x.\dfrac{1}{{{{\cos }^2}x}} + \dfrac{{2x}}{{{{\sin }^2}x^2}}\\
= \dfrac{{2\sin x}}{{{{\cos }^3}x}} + \dfrac{{2x}}{{{{\sin }^2}x^2}}\\
e)y = \cos \dfrac{x}{{1 + x}}\\y' = \left( {\dfrac{x}{{x + 1}}} \right)'.\left( { - \sin \dfrac{x}{{x + 1}}} \right)\\ = - \sin \left( {\dfrac{x}{{1 + x}}} \right).\dfrac{{\left( x \right)'\left( {1 + x} \right) - x.\left( {1 + x} \right)'}}{{{{\left( {1 + x} \right)}^2}}}\\
= - \sin \dfrac{x}{{1 + x}}.\left( {\dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}} \right)\\
= - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}.\sin \dfrac{x}{{1 + x}}
\end{array}\)
Unit 5: Vietnam and ASEAN
Chủ đề 4. Tổ chức cuộc sống gia đình và tài chính cá nhân
Chương 3. Quá trình giành độc lập của các quốc gia ở Đông Nam Á
Chuyên đề 2. Một số vấn đề về du lịch thế giới
Chương III. Công nghệ thức ăn chăn nuôi
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11