PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

Bài 49 trang 125 sgk toán lớp 8 - tập 2

Đề bài

Tính diện tích xung quanh của các hình chóp tứ giác đều sau đây (h.135).

Phương pháp giải - Xem chi tiết

Tính diện tích xung quanh theo công thức: \(S_{xq} = p.d\), trong đó \(p\) là nửa chu vi đáy, \(d\) là trung đoạn của hình chóp đều.

Lời giải chi tiết

 

Hình chóp đều có độ dài các cạnh đáy bằng nhau nên chu vi đáy là:

C = 4. độ dài cạnh đáy

Hình a:

Diện tích xung quanh của hình chóp là: 

        \(S_{xq} = p.d =  \dfrac{1}{2}. 4.6.10 = 120 (cm^2)\)

Hình b:

Diện tích xung quanh của hình chóp là:  

         \(S_{xq} = p.d =  \dfrac{1}{2}. 4. 7,5.9,5 = 142,5\) \( (cm^2)\)

Hình c:

Độ dài trung đoạn của hình chóp là :

         \(d = \sqrt{17^{2} -8^{2}} = \sqrt{289 -64}= \sqrt{225} \) \(= 15(cm) \) 

Diện tích xung quanh của hình chóp là: 

         \(S_{xq} = p.d =  \dfrac{1}{2}. 4 . 16.15 = 480 (cm^2)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved