Bài 1. Định lí Ta - let trong tam giác
Bài 2. Định lí đảo và hệ quả của định lí Ta - let
Bài 3. Tính chất đường phân giác của tam giác
Bài 4. Khái niệm hai tam giác đồng dạng
Bài 5. Trường hợp đồng dạng thứ nhất
Bài 6. Trường hợp đồng dạng thứ hai
Bài 7. Trường hợp đồng dạng thứ ba
Bài 8. Các trường hợp đồng dạng của tam giác vuông
Bài 9. Ứng dụng thực tế của tam giác đồng dạng
Ôn tập chương III. Tam giác đồng dạng
Bài 1. Hình hộp chữ nhật
Bài 2. Hình hộp chữ nhật (tiếp)
Bài 3. Thể tích của hình hộp chữ nhật
Bài 4. Hình lăng trụ đứng
Bài 5. Diện tích xung quanh của hình lăng trụ đứng
Bài 6. Thể tích của hình lăng trụ đứng
Bài 7. Hình chóp đều và hình chóp cụt đều
Bài 8. Diện tích xung quanh của hình chóp
Bài 9. Thể tích của hình chóp đều
Ôn tập chương IV. Hình lăng trụ đứng. Hình chóp đều
Video hướng dẫn giải
Ở hình 51, tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\)
LG a.
LG a.
Trong hình vẽ có bao nhiêu cặp tam giác đồng dạng?
Phương pháp giải:
Áp dụng:
- Trường hợp đồng dạng: Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia.
Lời giải chi tiết:
Xét \(∆ABC \) và \( ∆HBA\) có:
\( \widehat{A} = \widehat{H}={90^o}\)
\( \widehat{B}\) chung
\(\Rightarrow ∆ABC ∽ ∆HBA\) (1) (g-g)
Xét \(∆ABC \) và \( ∆HAC\) có:
\( \widehat{A} = \widehat{H}={90^o}\)
\( \widehat{C}\) chung
\(\Rightarrow ∆ABC ∽ ∆HAC\) (2) (g-g)
Từ (1) và (2) suy ra \(∆HAC ∽ ∆HBA\) (vì cùng đồng dạng với \(∆ABC\))
Vậy trong hình vẽ có 3 cặp tam giác đồng dạng
LG b.
LG b.
Cho biết: \(AB = 12,45 cm\), \(AC = 20,50cm\). Tính độ dài các đoạn \(BC, AH, BH\) và \(CH.\)
Phương pháp giải:
Áp dụng:
- Tính chất hai tam giác đồng dạng và định lý Pytago
Lời giải chi tiết:
\(∆ABC\) vuông tại \(A\) (giả thiết) nên áp dụng định lí Pitago ta có:
\(\eqalign{
& B{C^2} = A{B^2} + A{C^2} \cr
& \;\;\;\;\;\;\;\;= 12,{45^2} + 20,{50^2} = 575,2525 \cr
& \Rightarrow BC = \sqrt {575,2525} \approx 24\,cm \cr} \)
\( ∆ABC ∽ ∆HBA \) (chứng minh trên)
\( \Rightarrow \dfrac{AB}{HB} = \dfrac{BC}{BA}\) ( cặp cạnh tương ứng tỉ lệ)
\( \Rightarrow HB = \dfrac{AB^{2}}{BC} ≈ \dfrac{12,45^{2}}{24}≈ 6,5 cm\)
\( \Rightarrow CH = BC - BH \approx 24 - 6,5 \)\(\,= 17,5 cm.\)
Mặt khác: \( \dfrac{AC}{AH} = \dfrac{BC}{BA}\) (do \(∆ABC ∽ ∆HBA\) theo câu a)
\(\Rightarrow AH = \dfrac{AB.AC}{BC} \approx \dfrac{12,45.20,50}{24}\)
\( \Rightarrow AH \approx 10,6 cm\).
CHƯƠNG 4. HÔ HẤP
Revision (Units 5 - 6)
Bài 11. Dân cư và đặc điểm kinh tế khu vực Nam Á
Unit 7. Ethnic groups in Việt Nam
Unit 5: Study Habits - Thói quen học tập
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8