ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Bài 5 trang 83 SGK Đại số và Giải tích 11

Đề bài

Chứng minh rằng số đường chéo của một đa giác lồi \(n\) cạnh là \(\displaystyle {{n(n - 3)} \over 2}\)

Phương pháp giải - Xem chi tiết

Ta chứng minh khẳng định đúng với mọi \(n \in{\mathbb N}^*\), \(n ≥ 4\).

Sử dụng phương pháp quy nạp toán học để chứng minh.

Lời giải chi tiết

Kí hiệu số đường chéo của đa giác \(n\) cạnh là \(C_n\).

Ta chứng minh \(\displaystyle C_n = {{n(n - 3)} \over 2}\) (1) với mọi \(n \in{\mathbb N}^*\), \(n ≥ 4\).

*) Với \(n = 4\), ta có tứ giác nên nó có 2 đường chéo.

Mặt khác \(\displaystyle {{4(4 - 3)} \over 2} = 2\) nên (1) đúng với \(n = 4\).

Vậy khẳng định đúng với \(n= 4\).

*) Giả sử (1) đúng với \(n = k ≥ 4\), tức là \(C_k = \displaystyle {{k(k - 3)} \over 2}\)

*) Ta phải chứng minh (1) đúng với \(n = k + 1\).
Tức là \(C_{k+1}=\displaystyle {{(k + 1)((k + 1) - 3)} \over 2}\)
Xét đa giác lồi \(k + 1\) cạnh
Đa giác \(k\) cạnh \(A_1A_2...A_k\) có \(\displaystyle {{k(k - 3)} \over 2}\) đường chéo (giả thiết quy nạp).
Nối \(A_{k+1}\) với các đỉnh \(A_2,...,A_{k-1}\), ta được thêm \(k -2\) đường chéo.
Ngoài ra \(A_1A_k\) cũng là một đường chéo.

Vậy số đường chéo của đa giác \(k + 1\) cạnh là

\(\displaystyle {{k(k - 3)} \over 2}+ k - 2 + 1\)

\( = \dfrac{{{k^2} - 3k}}{2} + k - 1 \)

\(= \dfrac{{{k^2} - 3k + 2k - 2}}{2}\)

\(\displaystyle ={{{k^2} - k - 2} \over 2} \)

\( = \dfrac{{\left( {k + 1} \right)\left( {k - 2} \right)}}{2}\)

\(\displaystyle = {{(k + 1)((k + 1) - 3)} \over 2}\)

Như vậy, khẳng định cũng đúng với đa giác \(k + 1\) cạnh

Vậy bài toán đã được chứng minh.

Chú ý:

Trên đây là cách chứng minh bằng quy nạp, các em có thể dễ dàng chứng minhcông thức đó bằng kiến thức chương 2 như sau:

Cách 2: Đa giác lồi \(n\) cạnh có \(n\) đỉnh.

Chọn 2 điểm bất kì trong số các đỉnh của một đa giác ta được 1 cạnh hoặc 1 đường chéo của đa giác.

⇒ Tổng số cạnh và đường chéo của đa giác bằng:

\(C_n^2 = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}\)\( = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2\left( {n - 2} \right)!}} = \dfrac{{n\left( {n - 1} \right)}}{2}\)

⇒ Số đường chéo của đa giác lồi có \(n\) cạnh là:

\(\dfrac{{n\left( {n - 1} \right)}}{2} - n = \dfrac{{{n^2} - n - 2n}}{2}\)\( = \dfrac{{{n^2} - 3n}}{2} = \dfrac{{n\left( {n - 3} \right)}}{2}\)

Vậy ta có đpcm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved