Viết phương trình tiếp tuyến của đường hypebol \(y = \dfrac{1}{x}\):
LG a
Tại điểm \(( \dfrac{1}{2} ; 2)\)
Phương pháp giải:
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)
Lời giải chi tiết:
Xét giới hạn:
\(\begin{array}{l}
\,\,\,\,\,\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x_0}}}}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{{x_0} - x}}{{x.{x_0}\left( {x - {x_0}} \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{ - 1}}{{x.{x_0}}} = - \dfrac{1}{{x_0^2}}\\
\Rightarrow y'\left( {{x_0}} \right) = - \dfrac{1}{{x_0^2}}
\end{array}\)
Ta có: \(y' \left ( \dfrac{1}{2} \right )= -4\).
Vậy phương trình tiếp tuyến của hypebol tại điểm \((\dfrac{1}{2} ; 2)\) là \(y = - 4\left( {x - \dfrac{1}{2}} \right) + 2 = - 4x + 4\)
LG b
Tại điểm có hoành độ bằng \(-1\);
Phương pháp giải:
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)
Lời giải chi tiết:
Ta có: \(y' (-1) = -1, y(-1)=-1\).
Vậy phương trình tiếp tuyến tại điểm có hoành độ là \(-1\) là: \(y = - \left( {x + 1} \right) - 1 = - x - 2\).
LG c
Biết rằng hệ số góc của tiếp tuyến bằng \( -\dfrac{1}{4}\).
Phương pháp giải:
Hệ số góc của tiếp tuyến tại điểm có hoành độ \(x_0\) là \(f'\left( {{x_0}} \right) = 3\).
Giải phương trình tìm \(x_0\), từ đó viết phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\).
Lời giải chi tiết:
Gọi \(x_0\) là hoành độ tiếp điểm. Ta có
\(y' (x_0) = - \dfrac{1}{4} \Leftrightarrow - \dfrac{1}{x_{0}^{2}} = - \dfrac{1}{4}\)\(\Leftrightarrow x_{0}^{2} = 4 \Leftrightarrow x_{0}= ±2\).
Với \(x_{0}= 2\) ta có \(y(2) = \dfrac{1}{2}\), phương trình tiếp tuyến là \(y = - \dfrac{1}{4}\left( {x - 2} \right) + \dfrac{1}{2} = - \dfrac{1}{4}x + 1\).
Với \(x_{0} = -2\) ta có \(y (-2) = - \dfrac{1}{2}\), phương trình tiếp tuyến là: \(y = - \dfrac{1}{4}\left( {x + 2} \right) - \dfrac{1}{2} = - \dfrac{1}{4}x - 1\).
Chú ý: Trong các ý a, b, c đều sử dụng cách tính đạo hàm của hàm số tại điểm \(x=x_0\) bằng định nghĩa. Sau khi học xong bài 2 thì các em có thể quay lại làm lại bài tập này, việc tính đạo hàm sẽ dễ hơn rất nhiều.
Chương 3. Quá trình giành độc lập của các quốc gia ở Đông Nam Á
Chuyên đề 11.3: Cuộc Cách mạng công nghiệp lần thứ tư (4.0)
Ngữ âm
SGK Ngữ Văn 11 - Cánh Diều tập 2
Unit 5: Illiteracy - Nạn mù chữ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11