ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Bài 6 trang 169 SGK Đại số và Giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc \(x\):

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

\(\sin^6x + \cos^6x + 3\sin^2x.\cos^2x\)

Phương pháp giải:

Tính đạo hàm của các hàm số đã cho và rút gọn.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
y' = \left( {{{\sin }^6}x} \right)' + \left( {{{\cos }^6}x} \right)' + \left( {3{{\sin }^2}x{{\cos }^2}x} \right)'\\
= 6{\sin ^5}x\left( {\sin x} \right)' + 6{\cos ^5}x\left( {\cos x} \right)'\\
+ 3.\left[ {\left( {{{\sin }^2}x} \right)'{{\cos }^2}x + {{\sin }^2}x\left( {{{\cos }^2}x} \right)'} \right]\\
= 6{\sin ^5}x\cos x + 6{\cos ^5}x\left( { - \sin x} \right)\\
+ 3\left[ {2\sin x\cos x{{\cos }^2}x + {{\sin }^2}x.2\cos x\left( { - \sin x} \right)} \right]\\
= 6{\sin ^5}x\cos x - 6{\cos ^5}x\sin x\\
+ 6\sin x{\cos ^3}x - 6\cos x{\sin ^3}x\\
= \left( {6{{\sin }^5}x\cos x - 6\cos x{{\sin }^3}x} \right)\\
+ 6\sin x{\cos ^3}x - 6{\cos ^5}x\sin x\\
= 6{\sin ^3}x\cos x\left( {{{\sin }^2}x - 1} \right)\\
+ 6\sin x{\cos ^3}x\left( {1 - {{\cos }^2}x} \right)\\
= 6{\sin ^3}x\cos x.\left( { - {{\cos }^2}x} \right)\\
+ 6\sin x{\cos ^3}x{\sin ^2}x\\
= - 6{\sin ^3}x{\cos ^3}x + 6{\sin ^3}x{\cos ^3}x\\
= 0\\
\Rightarrow y' = 0,\forall x
\end{array}\)

Vậy \(y' = 0\) với mọi \(x\), tức là \(y'\) không phụ thuộc vào \(x\).

Cách khác:

\(\begin{array}{l}
{\sin ^6}x + {\cos ^6}x\\
= {\left( {{{\sin }^2}x} \right)^3} + {\left( {{{\cos }^2}x} \right)^3}\\
= {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} - 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\\
= {1^3} - 3{\sin ^2}x{\cos ^2}x.1\\
= 1 - 3{\sin ^2}x{\cos ^2}x\\
\Rightarrow y = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x = 1\\
\Rightarrow y' = \left( 1 \right)' = 0
\end{array}\)

LG b

\({\cos ^2}\left ( \dfrac{\pi }{3}-x \right )+ {\cos ^2} \left ( \dfrac{\pi }{3}+x \right ) +  {\cos ^2}\left ( \dfrac{2\pi }{3}-x \right )\) \(+{\cos ^2}  \left ( \dfrac{2\pi }{3}+x \right )-2\sin^2x\)

Phương pháp giải:

Sử dụng các công thức biến đổi tổng thành tích: \(\sin x - \sin y = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}\)

Lời giải chi tiết:

\(y = {{1 + \cos \left( {{{2\pi } \over 3} - 2x} \right)} \over 2} + {{1 + \cos \left( {{{2\pi } \over 3} + 2x} \right)} \over 2} + {{1 + \cos \left( {{{4\pi } \over 3} - 2x} \right)} \over 2} \)

\(+ {{1 + \cos \left( {{{4\pi } \over 3} + 2x} \right)} \over 2} - 2{\sin ^2}x\)

\( = \dfrac{1}{2} + \dfrac{1}{2}\cos \left( {\dfrac{{2\pi }}{3} - 2x} \right)\) \( + \dfrac{1}{2} + \dfrac{1}{2}\cos \left( {\dfrac{{2\pi }}{3} + 2x} \right)\) \( + \dfrac{1}{2} + \dfrac{1}{2}\cos \left( {\dfrac{{4\pi }}{3} - 2x} \right)\) \( + \dfrac{1}{2} + \dfrac{1}{2}\cos \left( {\dfrac{{4\pi }}{3} + 2x} \right)\) \( - 2.\dfrac{{1 - \cos 2x}}{2}\)

\( = 1 + \dfrac{1}{2}\cos \left( {\dfrac{{2\pi }}{3} - 2x} \right)\) \( + \dfrac{1}{2}\cos \left( {\dfrac{{2\pi }}{3} + 2x} \right)\) \( + \dfrac{1}{2}\cos \left( {\dfrac{{4\pi }}{3} - 2x} \right)\) \( + \dfrac{1}{2}\cos \left( {\dfrac{{4\pi }}{3} + 2x} \right)\) \( + \cos 2x\)

Do đó \(y' = \dfrac{1}{2}.\left( { - 2} \right).\left[ { - \sin \left( {\dfrac{{2\pi }}{3} - 2x} \right)} \right]\) \( + \dfrac{1}{2}.2.\left[ { - \sin \left( {\dfrac{{2\pi }}{3} + 2x} \right)} \right]\) \( + \dfrac{1}{2}.\left( { - 2} \right).\left[ { - \sin \left( {\dfrac{{4\pi }}{3} - 2x} \right)} \right]\) \( + \dfrac{1}{2}.2.\left[ { - \sin \left( {\dfrac{{4\pi }}{3} + 2x} \right)} \right]\) \( - 2\sin 2x\)

\(=\sin \left ( \dfrac{2\pi }{3}-2x \right ) - \sin \left ( \dfrac{2\pi }{3}+2x \right )+ \sin \left ( \dfrac{4\pi }{3}-2x \right )\) \(- \sin \left ( \dfrac{4\pi }{3}+2x \right )- 2\sin 2x \)

\(= 2\cos \dfrac{2\pi }{3}.\sin(-2x) + 2\cos \dfrac{4\pi }{3}. \sin (-2x) - 2\sin 2x \)

\(= \sin 2x + \sin 2x - 2\sin 2x = 0\),

(Vì \(\cos \dfrac{2\pi }{3}\) = \(\cos \dfrac{4\pi }{3}\) = \( -\dfrac{1}{2}\).)

Vậy \(y' = 0\) với mọi \(x\), do đó \(y'\) không phụ thuộc vào \(x\).

Cách khác:

\(\begin{array}{l}
y= 1 + \dfrac{1}{2}\left[ {\cos \left( {\dfrac{{2\pi }}{3} - 2x} \right) + \cos \left( {\dfrac{{4\pi }}{3} - 2x} \right)} \right]\\
+ \dfrac{1}{2}\left[ {\cos \left( {\dfrac{{2\pi }}{3} + 2x} \right) + \cos \left( {\dfrac{{4\pi }}{3} + 2x} \right)} \right] + \cos 2x\\
= 1 + \dfrac{1}{2}.2\cos \left( {\pi - 2x} \right)\cos \dfrac{\pi }{3}\\
+ \dfrac{1}{2}.2\cos \left( {\pi + 2x} \right)\cos \dfrac{\pi }{3} + \cos 2x\\
= 1 - \cos 2x.\dfrac{1}{2} - \cos 2x.\dfrac{1}{2} + \cos 2x\\
= 1 - \cos 2x + \cos 2x = 1\\
\Rightarrow y = 1,\forall x\\
\Rightarrow y' = 0,\forall x
\end{array}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved