PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

Bài 61 trang 92 sgk toán 8 tập 2

Đề bài

Tứ giác \(ABCD\) có \(AB = 4cm, BC = 20 cm\), \(CD = 25 cm, DA = 8cm\), đường chéo \(BD = 10cm\).

a) Nêu cách vẽ tứ giác \(ABCD\) có kích thước đã cho ở trên.

b) Các tam giác \(ABD\) và \(BDC\) có đồng dạng với nhau không? Vì sao?

c) Chứng minh rằng \(AB // CD\).

Phương pháp giải - Xem chi tiết

Áp dụng cách vẽ tam giác, dấu hiệu nhận biết hình thang, dấu hiệu nhận biết hai tam giác đồng dạng.

Lời giải chi tiết

 

a) Cách vẽ:

- Vẽ \(ΔBDC\):

   + Vẽ \(DC = 25cm\)

   + Vẽ cung tròn tâm \(D\) có bán kính \(10cm\) và cung tròn tâm \(C\) có bán kính \(20cm\). Giao điểm của hai cung tròn là \( B\).

- Vẽ điểm A: Vẽ cung tròn tâm \(B\) có bán kính \( 4cm\) và cung tròn tâm \(D\) có bán kính \( 8cm\). Giao điểm của hai cung tròn này là điểm \(A\). Nối các cạnh BD, BC, DA, BA. 

Vậy là ta đã vẽ được tứ giác \(ABCD\) thỏa mãn điều kiện đề bài.

b) Ta có: \(\dfrac{{AB}}{{BD}} = \dfrac{4}{{10}} = \dfrac{2}{5};\) \(\dfrac{{BD}}{{DC}} = \dfrac{{10}}{{25}} = \dfrac{2}{5};\) \(\dfrac{{AD}}{{BC}} = \dfrac{8}{{20}} = \dfrac{2}{5}\)

\( \Rightarrow \dfrac{{AB}}{{BD}} = \dfrac{{BD}}{{DC}} = \dfrac{{AD}}{{BC}}\)

\(\Rightarrow \Delta AB{\rm{D}} \backsim \Delta B{\rm{D}}C\left( {c - c - c} \right)\)

c) \(∆ABD∽ ∆BDC\) (chứng minh trên)

\(\Rightarrow \widehat {ABD} = \widehat {BDC}\), mà hai góc ở vị trí so le trong.

\(\Rightarrow AB // DC\) hay \(ABCD\) là hình thang.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved