1. Nội dung câu hỏi
Cho x, y là các số thực dương. Rút gọn các biểu thức sau:
a) \(A = \frac{{{x^{\frac{1}{3}}}\sqrt y + {y^{\frac{1}{3}}}\sqrt x }}{{\sqrt[6]{x} + \sqrt[6]{y}}};\)
b) \(B = {\left( {\frac{{{x^{\sqrt 3 }}}}{{{y^{\sqrt 3 - 1}}}}} \right)^{\sqrt 3 + 1}}.\frac{{{x^{ - \sqrt 3 - 1}}}}{{{y^{ - 2}}}}.\)
2. Phương pháp giải
Sử dụng công thức
\({a^{\frac{1}{n}}} = \sqrt[n]{a};{\left( {{a^m}} \right)^n} = {a^{m.n}};{a^m}:{a^n} = {a^{m - n}};{a^{ - n}} = \frac{1}{{{a^n}}}.\)
3. Lời giải chi tiết
a) \(A = \frac{{{x^{\frac{1}{3}}}\sqrt y + {y^{\frac{1}{3}}}\sqrt x }}{{\sqrt[6]{x} + \sqrt[6]{y}}} = \frac{{{x^{\frac{1}{3}}}.{y^{\frac{1}{2}}} + {y^{\frac{1}{3}}}.{x^{\frac{1}{2}}}}}{{{x^{\frac{1}{6}}} + {y^{\frac{1}{6}}}}} = \frac{{{x^{\frac{1}{3}}}.{y^{\frac{1}{3}}}\left( {{y^{\frac{1}{6}}} + {x^{\frac{1}{6}}}} \right)}}{{{x^{\frac{1}{6}}} + {y^{\frac{1}{6}}}}} = \sqrt[3]{x}.\sqrt[3]{y} = \sqrt[3]{{xy}}\)
b) \(B = {\left( {\frac{{{x^{\sqrt 3 }}}}{{{y^{\sqrt 3 - 1}}}}} \right)^{\sqrt 3 + 1}}.\frac{{{x^{ - \sqrt 3 - 1}}}}{{{y^{ - 2}}}} = \frac{{{x^{\sqrt 3 .\left( {\sqrt 3 + 1} \right)}}}}{{{y^{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}}}}.\frac{{{x^{ - \sqrt 3 - 1}}}}{{{y^{ - 2}}}} = \frac{{{x^{3 + \sqrt 3 }}}}{{{y^2}}}.\frac{{{x^{ - \left( {\sqrt 3 + 1} \right)}}}}{{{y^{ - 2}}}} = \frac{{{x^{3 + \sqrt 3 }}}}{{{y^2}}}.\frac{{{y^2}}}{{{x^{\sqrt 3 + 1}}}} = \frac{{{x^{3 + \sqrt 3 }}}}{{{x^{\sqrt 3 + 1}}}} = {x^{3 + \sqrt 3 - \sqrt 3 - 1}} = {x^2}\)
Review 1 (Units 1-3)
Tải 20 đề kiểm tra 15 phút - Chương 4
Bài 7. Pháp luật về quản lí vũ khí, vật liệu nổ, công cụ hỗ trợ
CHƯƠNG 2. CẢM ỨNG
Unit 4: The Body
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11