Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho tứ diện \(ABCD\). Gọi \(M\) và \(N\) lần lượt là trung điểm của các cạnh \(AB\) và \(CD\) trên cạnh \(AD\) lấy điểm \(P\) không trùng với trung điểm của \(AD\)
a) Gọi \(E\) là giao điểm của đường thẳng \(MP\) và đường thẳng \(BD\). Tìm giao tuyến của hai mặt phẳng \((PMN)\) và \((BCD)\)
b) Tìm giao điểm của mặt phẳng \((PMN)\) và \(BC\).
Phương pháp giải - Xem chi tiết
Muốn tìm giao tuyến của hai mặt phẳng, ta tìm hai điểm chung của hai mặt phẳng đó.
Lời giải chi tiết
a) Trong \(\left( {ABD} \right)\), ta có: \(E = MP \cap BD\). Vì:
\(\begin{array}{l}
\left\{ \begin{array}{l}
E \in BD \subset \left( {BCD} \right) \Rightarrow E \in \left( {BCD} \right)\\
E \in MP \subset \left( {MNP} \right) \Rightarrow E \in \left( {MNP} \right)
\end{array} \right.\\ \Rightarrow E \in \left( {BCD} \right) \cap \left( {MNP} \right)\\
\text {Lại có:}\\ \left\{ \begin{array}{l}
N \in CD \subset \left( {BCD} \right) \Rightarrow N \in \left( {BCD} \right)\\
N \in \left( {MNP} \right)
\end{array} \right.\\ \Rightarrow N \in \left( {BCD} \right) \cap \left( {MNP} \right)\\
\Rightarrow NE = \left( {BCD} \right) \cap \left( {MNP} \right)
\end{array}\) hay \(NE\) là giao tuyến của mặt phẳng \(BCD\) và \(MNP\)
b) Trong mặt phẳng \((BCD)\) gọi \(Q\) là giao điểm của \(NE\) và \(BC\) ta có:
\(\left\{ \begin{array}{l}
Q \in BC\\
Q \in NE \subset \left( {MNP} \right) \Rightarrow Q \in \left( {MNP} \right)
\end{array} \right.\\ \Rightarrow Q = BC \cap \left( {MNP} \right)\)
SBT Ngữ văn 11 - Kết nối tri thức tập 2
SBT tiếng Anh 11 mới tập 1
Unit 2: Generation gap
Câu hỏi tự luyện Địa 11
Vocabulary Expansion
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11