Đề bài
Một con lắc đơn đang dao động điều hòa với biên độ góc \({\alpha _0}\) tại một nơi có gia tốc trọng trường là \(g\). Biết lực căng dây lớn nhất bằng \(1,02\) lần lực căng dây nhỏ nhất. Tính biên độ góc \({\alpha _0}\).
Phương pháp giải - Xem chi tiết
Sử dụng định luật II Niuton xác định biểu thức lực căng dây.
Lời giải chi tiết
Tại vị trí li độ góc \(\alpha \):
\(\begin{array}{l}\left\{ \begin{array}{l}{{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\\{{\rm{W}}_d} = mgl(\cos \alpha - \cos {\alpha _0})\end{array} \right.\\ \Rightarrow v = \sqrt {2gl(\cos \alpha - \cos {\alpha _0})} \end{array}\)
Áp dụng định luật II Niuton:
\(\overrightarrow T + \overrightarrow P = m\overrightarrow a \)
Chiếu theo phương hướng tâm:
\(\begin{array}{l}T - P\cos \alpha = m{a_{ht}} = m\dfrac{{{v^2}}}{l}\\ \Leftrightarrow T = P\cos \alpha + m\dfrac{{{v^2}}}{l}\\= mg\cos \alpha + 2mg(\cos \alpha - \cos {\alpha _0})\\= mg(3\cos \alpha - 2\cos {\alpha _0})\end{array}\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}{T_{\max }} = mg(3 - 2\cos {\alpha _0})(VTCB)\\{T_{\min }} = mg\cos {\alpha _0}(VTB)\end{array} \right.\\ \Rightarrow \dfrac{{{T_{\max }}}}{{{T_{\min }}}} = \dfrac{{3 - 2\cos {\alpha _0}}}{{\cos {\alpha _0}}} = 1,02\\ \Rightarrow \cos {\alpha _0} = 0,99 \Rightarrow {\alpha _0} = 0,115(rad)\end{array}\)
Bài 13. Thực hành: đọc bản đồ địa hình, điền vào lược đồ trống một số dãy núi và đỉnh núi
Đề khảo sát chất lượng đầu năm
Unit 15. Women in Society
Luyện đề đọc hiểu - THCS
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Sinh học lớp 12