Các dạng toán về đường thẳng vuông góc với mặt phẳng

Dưới đây là một số bài toán về quan hệ vuông góc trong không gian:

Dạng 1: Chứng minh đường thẳng vuông góc với mặt phẳng

Phương pháp:

Muốn chứng minh đường thẳng $d \bot \left( \alpha  \right)$ ta có thể dùng một trong hai cách sau.

Cách 1. Chứng minh $d$ vuông góc với hai đường thẳng $a,b$ cắt nhau trong $\left( \alpha  \right)$.

Kí hiệu: $\left\{ \begin{array}{l}d \bot a\\d \bot b\\a \subset \left( \alpha  \right),b \subset \left( \alpha  \right)\\a \cap b = I\end{array} \right. \Rightarrow a \bot \left( \alpha  \right)$

Cách 2. Chứng minh $d$ song song với đường thẳng $a$ mà $a$ vuông góc với $\left( \alpha  \right)$.

Kí hiệu: $\left\{ \begin{array}{l}d\parallel a\\\left( \alpha  \right) \bot a\end{array} \right. \Rightarrow d \bot \left( \alpha  \right)$

Cách 3. Chứng minh $d$ vuông góc với $\left( Q \right)$ và $\left( Q \right)//\left( P \right)$.

Dạng 2: Chứng minh hai đường thẳng vuông góc bằng cách dùng đường thẳng vuông góc mặt phẳng

Phương pháp:

Để chứng minh $d \bot \;a$, ta có thể chứng minh bởi một trong các cách sau:

Cách 1: Chứng minh $d$ vuông góc với $\left( P \right)$ và $\left( P \right)$ chứa $a$.

Cách 2: Sử dụng định lí ba đường vuông góc.

Cách 3: Sử dụng các cách chứng minh đã biết ở phần trước.

Ví dụ:

Cho tứ diện \(SABC\) có tam giác \(ABC\) vuông tại \(B\), \(SA \bot \left( {ABC} \right)\)

a) Chứng minh: \(BC \bot \left( {SAB} \right)\)

b) Gọi \(AH\) là đường cao của \(\Delta SAB\). Chứng minh: \(AH \bot SC\)

Giải

a) Ta có: \(\left\{ \begin{array}{l}SA \bot \left( {ABC} \right)\\BC \subset \left( {ABC} \right)\end{array} \right. \Rightarrow SA \bot BC\)

Mà \(BC \bot AB\) (do tam giác \(ABC\) vuông tại \(B\))

Nên \(\left\{ \begin{array}{l}BC \bot SA\\BC \bot AB\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\) (đpcm)

b) Do \(\left\{ \begin{array}{l}BC \bot \left( {SAB} \right)\\AH \subset \left( {SAB} \right)\end{array} \right. \Rightarrow BC \bot AH\) (1)

Lại có \(AH \bot SB\) (2)

Từ (1) và (2) suy ra \(AH \bot \left( {SBC} \right)\)

Mà \(SC \subset \left( {SBC} \right) \Rightarrow AH \bot SC\) (đpcm).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved