Câu 17 trang 19 SGK Hình học 11 Nâng cao

Đề bài

Cho hai điểm cố định B, C trên đường tròn \((O; R)\) và một điểm A thay đổi trên đường tròn đó. Hãy dùng phép đối xứng tâm để chứng minh rằng trực tâm H của tam giác ABC nằm trên một đường tròn cố định

Hướng dẫn. Gọi I là trung điểm BC . Hãy vẽ đường kính AM của đường tròn rồi chứng minh rằng I là trung điểm của đoạn thẳng HM

Lời giải chi tiết

Nếu BC là đường kính thì tam giác ABC vuông tại A, do đó H trùng A nằm trên (O;R) cố định.

Nếu BC không là đường kính thì vẽ đường kính AM của đường tròn.

Khi đó,

BH // MC (vì cùng vuông góc với AC)

CH // MB (vì cùng vuông góc với AB)

Do đó BHCM là hình bình hành nên BC và MH cắt nhau tại trùng điểm I của mỗi đường.

Hay I là trung điểm của MH.

Vậy phép đối xứng qua điểm I biến M thành H.

Khi A chạy trên đường tròn \((O ; R)\) thì M chạy trên đường tròn \((O ; R)\).

Do đó, H nằm trên đường tròn là ảnh của đường tròn \((O ; R)\) qua phép đối xứng tâm I.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved