Đề bài
Cho dãy số \(({u_n})\) xác định bởi
\({u_1} = 2\) và \({u_{n + 1}} = 3.u_n^2 - 10\) với mọi \(n \ge 1.\)
Chứng minh rằng dãy số \(({u_n})\) vừa là cấp số cộng vừa là cấp số nhân.
Lời giải chi tiết
Ta chứng minh \(u_n=2\) (1) với mọi \(n \ge 1.\)
+) Với \(n = 1\) ta có \(u_1=2\)
+) Giả thiết (1) đúng với \(n = k\), tức là: \({u_k} = 2\)
Ta chứng minh (1) đúng với \(n = k + 1\)
\({u_{k + 1}} = 3.u_k^2 - 10 = {3.2^2} - 10 = 2\)
Vậy \({u_n} = 2\) với mọi \(n \ge 1\)
Unit 7: Education options for school-leavers
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
CLIL
Unit 4: Preserving World Heritage
Unit 5: Global warming
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11