Đề bài
Cho dãy số \(({u_n})\) xác định bởi
\({u_1} = 2\) và \({u_{n + 1}} = 3.u_n^2 - 10\) với mọi \(n \ge 1.\)
Chứng minh rằng dãy số \(({u_n})\) vừa là cấp số cộng vừa là cấp số nhân.
Lời giải chi tiết
Ta chứng minh \(u_n=2\) (1) với mọi \(n \ge 1.\)
+) Với \(n = 1\) ta có \(u_1=2\)
+) Giả thiết (1) đúng với \(n = k\), tức là: \({u_k} = 2\)
Ta chứng minh (1) đúng với \(n = k + 1\)
\({u_{k + 1}} = 3.u_k^2 - 10 = {3.2^2} - 10 = 2\)
Vậy \({u_n} = 2\) với mọi \(n \ge 1\)
Chủ đề 3. Công nghệ thức ăn chăn nuôi
Bài 6. Giới thiệu một số loại súng bộ binh, thuốc nổ, vật cản và vũ khí tự tạo
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Hóa học lớp 11
Chương 7. Hiđrocacbon thơm. Nguồn hiđrocacbon thiên nhiên. Hệ thống hóa về hiđrocacbon
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11