Chứng minh rằng với mọi \(n\in {\mathbb N}^*\), ta có:
LG a
\(13^n-1\) chia hết cho \(6\)
Phương pháp giải:
Sử dụng phương pháp quy nạp toán học để chứng minh.
Lời giải chi tiết:
Với \(n = 1\), ta có: \(13^1– 1 = 13– 1 = 12 \,\,⋮\,\, 6\)
Giả sử: \(13^k- 1\) \( ⋮ \) \(6\) với mọi \(k ≥ 1\)
Ta chứng minh: \(13^{k+1}– 1\) chia hết cho \(6\)
Thật vậy:
\({13^{k + 1}}-{\rm{ }}1{\rm{ }} = {\rm{ }}{13^{k + 1}}-{\rm{ }}{13^k} + {\rm{ }}{13^k} - 1{\rm{ }} \)
\(\begin{array}{l}
= \left( {{{13}^{k + 1}} - {{13}^k}} \right) + \left( {{{13}^k} - 1} \right)\\
= {13^k}\left( {13 - 1} \right) + \left( {{{13}^k} - 1} \right)
\end{array}\)
\(= {\rm{ }}{12.13^k} + {13^k}-{\rm{ }}1\)
Vì : \(12.13^k\) \(⋮\) \(6\) và \(13^k– 1\) \(⋮\) \(6\) (theo giả thiết quy nạp)
Nên : \(13^{k+1}– 1\) \(⋮\) \(6\)
Vậy \(13^n-1\) chia hết cho \(6\) với mọi \(n \in N^*\).
LG b
\(3n^3+ 15n\) chia hết cho \(9\)
Lời giải chi tiết:
Với \(n = 1\), ta có: \(3.1^3+ 15.1 = 18\) \(⋮\) \(9\)
Giả sử: \(3k^3+ 15k\) \(⋮\) \(9\) \(\forall k \ge 1\).
Ta chứng minh: \(3(k + 1)^3+ 15(k + 1)\) \(⋮\) \(9\)
Thật vậy:
\(3{\left( {k + 1} \right)^3} + 15\left( {k + 1} \right) \)
\(= 3.{\rm{ }}({k^3} + {\rm{ }}3{k^2} + {\rm{ }}3k + 1) + 15\left( {k + 1} \right)\)
\(= 3k^3+ 9k^2+ 9k + 15k + 18\)
\(= (3k^3+ 15k ) + 9(k^2+ k + 2)\)
Vì \(3k^3 + 15k\) \(⋮ \) \(9\) (theo giả thiết quy nạp) và \(9(k^2+ k + 2)\) \(⋮\) \(9\)
Nên: \(3(k + 1)^3+ 15(k + 1)\) \(⋮\) \(9\)
Vậy: \(3n^3+ 15n\) chia hết cho \(9\) với mọi \(n\in {\mathbb N}^*\)
SBT Toán 11 - Kết nối tri thức với cuộc sống tập 1
Unit 9: Life Now and in the Past
PHẦN 1. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (Tiếp theo)
Chương II. Công nghệ giống vật nuôi
Chủ đề 4. Sản xuất cơ khí
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11