Đề bài
Cho mặt phẳng (P) và ba điểm không thẳng hàng A, B, C cùng nằm ngoài (P). Chứng minh rằng nếu ba đường thẳng AB, BC, CA đều cắt mp (P) thì các giao điểm đó thẳng hàng.
Lời giải chi tiết
Gọi I, J, K lần lượt là giao điểm của AB, AC, BC với mp(P). A, B, C không thẳng hàng nên có mp(ABC).
Ta có:
\(\begin{array}{l}
I = AB \cap \left( P \right)\\
\Rightarrow \left\{ \begin{array}{l}
I \in AB \subset \left( {ABC} \right)\\
I \in \left( P \right)
\end{array} \right.\\
\Rightarrow I \in \left( {ABC} \right) \cap \left( P \right)\,\,\,\left( 1 \right)\\
J = AC \cap \left( P \right)\\
\Rightarrow \left\{ \begin{array}{l}
J \in AC \subset \left( {ABC} \right)\\
J \in \left( P \right)
\end{array} \right.\\
\Rightarrow J \in \left( {ABC} \right) \cap \left( P \right)\,\,\,\left( 2 \right)
\end{array}\)
Từ (1) và (2)\( \Rightarrow \left( {ABC} \right) \cap \left( P \right) = IJ\)
Lại có,
\(\begin{array}{l}
K = BC \cap \left( P \right)\\
\Rightarrow \left\{ \begin{array}{l}
K \in BC \subset \left( {ABC} \right)\\
K \in \left( P \right)
\end{array} \right.\\
\Rightarrow K \in \left( {ABC} \right) \cap \left( P \right) = IJ
\end{array}\)
Vậy I, J, K thẳng hàng.
Review Unit 7
Chuyên đề II. Truyền thông tin bằng sóng vô tuyến
PHẦN BA. LỊCH SỬ VIỆT NAM (1858 - 1918)
CHƯƠNG I. CHUYỂN HÓA VẬT CHẤT VÀ NĂNG LƯỢNG
Unit 8: Cties
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11