Đề bài
Xét tính liên tục trên R của hàm số: \(g\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - x - 2}}{{x - 2}}\,\,\,\,\,\,\,\,\,khi\,\,x > 2\\5 - x\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \le 2\end{array} \right.\)
Phương pháp giải - Xem chi tiết
Hàm đa thức và hàm phân thức liên tục trên từng khoảng xác định của nó.
Xét tính liên tục của hàm số tại \(x=2\).
Hàm số liên tục tại \(x=2\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\)
Lời giải chi tiết
Ta có:
\(\eqalign{
& \mathop {\lim }\limits_{x \to {2^ + }} g(x) = \mathop {\lim }\limits_{x \to {2^ + }} {{{x^2} - x - 2} \over {x - 2}}\cr& = \mathop {\lim }\limits_{x \to {2^ + }} {{(x - 2)(x + 1)} \over {x - 2}} \cr
& = \mathop {\lim }\limits_{x \to {2^ + }} (x + 1) = 3 \,\,\,\, (1)\cr} \)
\(\mathop {\lim }\limits_{x \to {2^ - }} g(x) = \mathop {\lim }\limits_{x \to {2^ - }} (5 - x) = 3\,\,\,\,(2)\)
\(g(2) = 5 – 2 = 3 \,\,\,\,\,\,\,\,\, (3)\)
Từ (1), (2) và (3) suy ra: \(\mathop {\lim }\limits_{x \to 2} g(x) = g(2)\) .
Do đó hàm số \(y = g(x)\) liên tục tại \(x_0= 2\)
Mặt khác trên \((-∞, 2)\), \(g(x)\) là hàm đa thức và trên \((2, +∞)\), \(g(x)\) là hàm số phân thức hữu tỉ xác định trên \((2, +∞)\) nên hàm số \(g(x)\) liên tục trên hai khoảng \((-∞, 2)\) và \((2, +∞)\)
Vậy hàm số \(y = g(x)\) liên tục trên \(\mathbb R\).
Chủ đề 5. Cơ thể là một thể thống nhất và ngành nghề liên quan đến sinh học cơ thể
Chủ đề 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở Biển Đông
Chương I. Dao động
SGK Toán 11 - Cánh Diều tập 1
Tập làm văn lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11