Tìm số hạng đầu \(u_1\) và công sai \(d\) của các cấp số cộng (un) biết:
LG a
\(\left\{ \matrix{5{u_1} + 10u_5 = 0 \hfill \cr {S_4} = 14 \hfill \cr} \right.\)
Phương pháp giải:
Sử dụng các công thức
\[\begin{array}{l}
{u_n} = {u_1} + \left( {n - 1} \right)d\\
{S_n} = \frac{{\left( {2{u_1} + \left( {n - 1} \right)d} \right)n}}{2}
\end{array}\]
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}
\,\,\,\,\,\,\left\{ \begin{array}{l}
5{u_1} + 10{u_5} = 0\\
{S_4} = 14
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
5{u_1} + 10\left( {{u_1} + 4d} \right) = 0\\
\frac{{\left( {2{u_1} + 3d} \right).4}}{2} = 14
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
15{u_1} + 40d = 0\\
2{u_1} + 3d = 7
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{u_1} = 8\\
d = - 3
\end{array} \right.
\end{array}\)
Vậy số hạng đầu \(u_1= 8\), công sai \(d = -3\)
LG b
\(\left\{ \matrix{{u_7} + {u_{15}} = 60 \hfill \cr u_4^2 + u_{12}^2 = 1170 \hfill \cr} \right.\)
Phương pháp giải:
Sử dụng các công thức
\[\begin{array}{l}
{u_n} = {u_1} + \left( {n - 1} \right)d\\
{S_n} = \frac{{\left( {2{u_1} + \left( {n - 1} \right)d} \right)n}}{2}
\end{array}\]
Lời giải chi tiết:
Ta có:
\(\left\{ \matrix{
{u_7} + {u_{15}} = 60 \hfill \cr
u_4^2 + u_{12}^2 = 1170 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
({u_1} + 6d) + ({u_1} + 14d) = 60\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1) \hfill \cr
{({u_1} + 3d)^2} + {({u_1} + 11d)^2} = 1170\,\,\,\,(2) \hfill \cr} \right.\)
\((1) ⇔ 2u_1+ 20d = 60 ⇔ u_1= 30 – 10d\) thế vào \((2)\)
\((2) ⇔[(30 – 10d) + 3d]^2+ [(30 – 10d) + 11d]^2= 1170\)
\(⇔ (30 – 7d)^2+ (30 + d)^2= 1170\)
\(⇔900 – 420d + 49d^2+ 900 + 60d + d^2= 1170\)
\(⇔ 50d^2– 360d + 630 = 0\)
\( \Leftrightarrow \left[ \matrix{
d = 3 \Rightarrow {u_1} = 0 \hfill \cr
d = {{21} \over 5} \Rightarrow {u_1} = - 12 \hfill \cr} \right.\)
Vậy \(\left\{ \matrix{{u_1} = 0 \hfill \cr d = 3 \hfill \cr} \right.\) hoặc \(\left\{ \matrix{{u_1} = - 12 \hfill \cr d = {{21} \over 5} \hfill \cr} \right.\)
A
Chương 1. Một số khái niệm về lập trình và ngôn ngữ lập trình
Chủ đề 1. Tự tin là chính mình
Chủ đề 1: Cạnh tranh, cung, cầu trong kinh tế thị trường
Chuyên đề II. Truyền thông tin bằng sóng vô tuyến
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11