ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Câu 9 trang 41 SGK Đại số và giải tích 11

Đề bài

Nghiệm âm lớn nhất của phương trình \(2{\tan ^2}x + 5\tan x + 3 = 0\) là:

A. \({{ - \pi } \over 3}\)             B. \({{ - \pi } \over 4}\)

C. \({{ - \pi } \over 6}\)               D. \({{ - 5\pi } \over 6}\)

Phương pháp giải - Xem chi tiết

B1: Đặt \(t= \tan {x}\), giải phương trình bậc hai ẩn t.

B2: Giải phương trình lượng giác cơ bản và biểu diễn các nghiệm trên đường tròn lượng giác.

Lời giải chi tiết

 

Ta có:

\(\begin{array}{l}
2{\tan ^2}x + 5\tan x + 3 = 0 \\\Leftrightarrow \left[ \begin{array}{l}
\tan x = - 1\\
\tan x = - \frac{3}{2}
\end{array} \right.\\
\tan x = - 1 \Leftrightarrow x = - \frac{\pi }{4} + k\pi \\
\tan x = - \frac{3}{2}\Leftrightarrow  x = \arctan \left( { - \frac{3}{2}} \right) + k\pi 
\end{array}\)

Nghiệm âm lớn nhất của họ nghiệm \(x =  - \frac{\pi }{4} + k\pi \) là \(x =  - \frac{\pi }{4}\).

Nghiệm âm lớn nhất của họ nghiệm \(x = \arctan \left( { - \frac{3}{2}} \right) + k\pi \) là \(x = \arctan \left( { - \frac{3}{2}} \right)\)

Mà \(\arctan \left( { - \frac{3}{2}} \right) \approx  - 0,983, \) \(- \frac{\pi }{4} \approx  - 0,785 \Rightarrow  - \frac{\pi }{4} > \arctan \left( { - \frac{3}{2}} \right)\)

Vậy nghiệm âm lớn nhất của pt là \(x =  - \frac{\pi }{4}\).

Cách khác:

Dựa vào đường tròn lượng giác ta có: \(x =  - {\pi  \over 4}\) là nghiệm âm lớn nhất của phương trình đã cho.

Chọn đáp án B.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved