Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Chọn hệ tọa độ \(Oxy\) sao cho trục \(Ox\) trùng với trục đối xứng, rồi dùng biểu thức tọa độ của phép đối xứng qua trục \(Ox\) để chứng minh tính chất 1.
Lời giải chi tiết
Gọi \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\)
Xét phép đối xứng qua trục \(Ox\) thì \(A, B\) biến thành \(A'\left( {{x_A}; - {y_A}} \right),B'\left( {{x_B}; - {y_B}} \right)\)
Khi đó:
\(\begin{array}{l}
AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} \\
A'B' = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( { - {y_B} + {y_A}} \right)}^2}} \\
= \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} \\
= AB\\
\Rightarrow A'B' = AB \Rightarrow dpcm
\end{array}\)
Chú ý:
Trực quan các em có thể lấy hai điểm \(A, B\) cụ thể như sau:
Lấy ảnh \(A',B'\) của hai điểm \(A(1; 2)\) và \(B(2; 3)\) qua phép đối xứng trục \(Ox\)
Dùng biểu thức tọa độ của phép đối xứng qua trục \(Ox\), ta có:
\(A'(1;-2), B'(2;-3)\)
\(\eqalign{
& AB = \sqrt {{{(2 - 1)}^2} + {{(3 - 2)}^2}} \cr &= \sqrt {{1^2} + {1^2}} = \sqrt 2 \cr
& A'B' = \sqrt {{{(2 - 1)}^2} + {{( - 3 - ( - 2))}^2}} \cr &= \sqrt {{1^2} + {{( - 1)}^2}} = \sqrt 2 \cr} \)
\(⇒ A'B' = AB\)
CHƯƠNG I. CHUYỂN HÓA VẬT CHẤT VÀ NĂNG LƯỢNG
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương V - Hóa học 11
Review (Units 1 - 4)
Tập làm văn lớp 11
CHƯƠNG I. SỰ ĐIỆN LI
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11