Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Cho tam giác \(ABC\). Dựng về phía ngoài của tam giác các hình vuông \(BCIJ\), \(ACMN\), \(ABEF\)và gọi \(O\), \(P\), \(Q\) lần lượt là tâm đối xứng của chúng
LG a
Gọi \(D\) là trung điểm của \(AB\). Chứng minh rằng \(DOP\) là tam giác vuông cân đỉnh \(D\)
Phương pháp giải:
Sử dụng định nghĩa:
Cho \(O\) và góc lượng giác \(\alpha\). Phép biến hình biến \(O\) thành chính nó, biến mỗi điểm \(M\) khác \(O\) thành điểm \(M’\) sao cho \(OM’=OM\) và góc lượng giác \((OM;OM’)\) bằng \(\alpha\) được gọi là phép quay tâm \(O\) góc \(\alpha\).
Sử dụng tính chất phép quay biến một đoạn thẳng thành đoạn thẳng bằng đoạn thẳng đã cho.
Lời giải chi tiết:
\(\begin{array}{l}
{Q_{\left( {C;{{90}^0}} \right)}}\left( M \right) = A\\
{Q_{\left( {C;{{90}^0}} \right)}}\left( B \right) = I
\end{array}\)
Do đó phép quay tâm \(C\) góc \({90}^o\) biến \(MB\) thành \(AI\).
Nên \(MB\) bằng và vuông góc với \(AI\).
Tam giác ABM có DP là đường trung bình nên \(DP\)//\(BM\) và \(DP = \frac{1}{2}BM\).
Tam giác ABI có DO là đường trung bình nên \(DO\)//\(AI\) và \(DO = \frac{1}{2}AI\)
Từ đó suy ra \(DP \bot DO\) và DP=DO.
Vậy tam giác \(DPO\) vuông tại \(D\).
LG b
Chứng minh \(AO\) vuông góc với \(PQ\) và \(AO=PQ\)
Phương pháp giải:
Sử dụng định nghĩa:
Cho \(O\) và góc lượng giác \(\alpha\). Phép biến hình biến \(O\) thành chính nó, biến mỗi điểm \(M\) khác \(O\) thành điểm \(M’\) sao cho \(OM’=OM\) và góc lượng giác \((OM;OM’)\) bằng \(\alpha\) được gọi là phép quay tâm \(O\) góc \(\alpha\).
Sử dụng tính chất phép quay biến một đoạn thẳng thành đoạn thẳng bằng độ dài đoạn thẳng đã cho.
Lời giải chi tiết:
Ta có:
Do đó phép quay tâm D góc quay \(90^0\) biến AO thành QP.
Do đó \(OA\) bằng và vuông góc với \(PQ\).
Bài 8: Tiết 3: Thực hành: Tìm hiểu sự thay đổi GDP và phân bố nông nghiệp của Liên bang Nga - Tập bản đồ Địa lí 11
CHƯƠNG VII: MẮT VÀ CÁC DỤNG CỤ QUANG
CHUYÊN ĐỀ 3: DOANH NHÂN TRONG LỊCH SỬ VIỆT NAM
Grammar Expansion
Unit 8: Healthy and Life expectancy
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11