PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 120 trang 95 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC\) vuông tại \(A,\) điểm \(D\) thuộc cạnh \(AC\). Gọi \(E,\, F,\, G\) theo thứ tự là trung điểm của \(BD,\, BC,\, DC.\) Chứng minh rằng tứ giác \(AEFG\) là hình thang cân.

Phương pháp giải - Xem chi tiết

Áp dụng tính chất đường trung bình của tam giác 

+) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông: Trong tam giác vuông đường trung tuyến tuyến ứng với cạnh huyền bằng nửa cạnh ấy

Định nghĩa hình thang cân: Hình thang có hai góc ở đáy bằng nhau là hình thang cân.

Lời giải chi tiết

 

Trong \(∆ BDC\) ta có:

\(E\) là trung điểm của \(BD\) (gt)

\(F\) là trung điểm của \(BC\) (gt)

Nên \(EF\) là đường trung bình của \(∆ BDC\)

\(⇒ EF // DC\) hay \(EF // AG\)

Suy ra: Tứ giác \(AEFG\) là hình thang

+ Vì \(F\) là trung điểm của \(BC\) (gt)

\(G\) là trung điểm của \(DC\) (gt)

Nên \(FG\) là đường trung bình của \(∆ CBD\)

\(⇒ FG // BD\) \(⇒ {\widehat G_1} = {\widehat D_1}\) (đồng vị) (1)

Trong tam giác \(ABD\) vuông tại \(A\) có \(AE\) là trung tuyến ứng với cạnh huyền \(BD\)

\(⇒ AE = ED = \dfrac{1}{2}BD\) (tính chất tam giác vuông)

Nên \(∆ AED\) cân tại \(E\) \( \Rightarrow {\widehat A_1} = {\widehat D_1}\)  (2)

Từ (1) và (2) suy ra: \({\widehat A_1} = {\widehat G_1}\)

Vậy hình thang \(AEFG\) là hình thang cân (theo định nghĩa).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved