1. Nội dung câu hỏi
Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4\), chứng minh rằng:
a) \(\mathop {\lim }\limits_{x \to 3} 3f\left( x \right) = 12\)
b) \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{4} = 1\)
c) \(\mathop {\lim }\limits_{x \to 3} \sqrt {f\left( x \right)} = 2\)
2. Phương pháp giải
Sử dụng định lí về các phép toán giới hạn hữu hạn của hàm số.
3. Lời giải chi tiết
Định lí về các phép toán trên giới hạn hữu hạn của hàm số: Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) thì
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\), \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) nếu \(M \ne 0\).
a) Ta có \(\mathop {\lim }\limits_{x \to 3} 3f\left( x \right) = \mathop {\lim }\limits_{x \to 3} 3.\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 3.4 = 12\).
b) Ta có \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{4} = \frac{{\mathop {\lim }\limits_{x \to 3} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 3} 4}} = \frac{4}{4} = 1\).
c) Ta có \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4 \ge 0\) nên \(\mathop {\lim }\limits_{x \to 3} \sqrt {f\left( x \right)} = \sqrt 4 = 2\)
HÌNH HỌC SBT - TOÁN 11
Giáo dục pháp luật
Tổng hợp từ vựng lớp 11 (Vocabulary) - Tất cả các Unit SGK Tiếng Anh 11
Chủ đề 1. Giới thiệu chung về chăn nuôi
Bài 10: Tiết 1: Tự nhiên, dân cư và tình hình phát triển kinh tế Trung Quốc - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11