Đề bài
Biểu diễn miền nghiệm của mỗi bất phương trình sau:
a) \(x + 2y < 3\);
b) \(3x - 4y \ge - 3\);
c) \(y \ge - 2x + 4\);
d) \(y < 1 - 2x\).
Phương pháp giải - Xem chi tiết
Các bước biểu diễn miền nghiệm:
- Vẽ đường thẳng
- Thay tọa độ điểm O(0;0) vào bất phương trình
- Nếu thỏa mãn thì điểm O nằm trong miền nghiệm, ta gạch phần không chứa O
- Ngược lại thì không nằm trong miền nghiệm ta gạch phần chứa O.
Lời giải chi tiết
a) Ta vẽ đường thẳng d’:\(x + 2y = 3 \Leftrightarrow y = - \frac{x}{2} + \frac{3}{2}\)
Thay tọa độ điểm O(0;0) vào bất phương trình \(x + 2y < 3\) ta được:
\(0 + 2.0 = 0 < 3\) (Luôn đúng)
Vậy O nằm trong miền nghiệm.
Ta có miền nghiệm:
b) Ta vẽ đường thẳng d:\(3x - 4y = - 3 \Leftrightarrow y = \frac{{3x}}{4} + \frac{3}{4}\)
Thay tọa độ điểm O(0;0) vào bất phương trình \(3x - 4y \ge - 3\) ta được:
\(3.0 - 4.0 = 0 \ge - 3\) (Luôn đúng)
Vậy O nằm trong miền nghiệm.
Ta có miền nghiệm:
c) Ta vẽ đường thẳng d:\(y = - 2x + 4\)
Thay tọa độ điểm O(0;0) vào bất phương trình \(y \ge - 2x + 4\) ta được:
\(0 \ge - 2.0 + 4 \Leftrightarrow 0 \ge 4\) (Vô lí)
Vậy O không nằm trong miền nghiệm.
Ta có miền nghiệm:
d) Ta vẽ đường thẳng d:\(y = 1 - 2x\)
Thay tọa độ điểm O(0;0) vào bất phương trình \(y < 1 - 2x\) ta được:
\(0 < 1 - 2.0\) (Luôn đúng)
Vậy O nằm trong miền nghiệm.
Ta có miền nghiệm:
Chú ý
Đối với các bất phương trình có dấu “<” hoặc “>” thì vẽ đường thẳng là nét đứt.
Đối với các bất phương trình có dấu “\( \le \)” hoặc “\( \ge \)” thì vẽ đường thẳng là nét liền.
Unit 2: Science and inventions
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Địa lí lớp 10
CHƯƠNG III. LIÊN KẾT HÓA HỌC
Chủ đề 7: Pháp luật nước Cộng hòa xã hội chủ nghĩa Việt Nam
Chương 5. Năng lượng hóa học
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10