Đề bài
Tìm giá trị nhỏ nhất của biểu thức \(A = 2 + 3\sqrt {{x^2} + 1} \)
Phương pháp giải - Xem chi tiết
Xuất phát từ \({x^2} \ge 0,\forall x\)
Lời giải chi tiết
Ta có:
\(\begin{array}{l}{x^2} \ge 0,\forall x\\ \Rightarrow {x^2} + 1 \ge 1,\forall x\\ \Rightarrow \sqrt {{x^2} + 1} \ge \sqrt 1 = 1,\forall x\\ \Rightarrow A = 2 + 3\sqrt {{x^2} + 1} \ge 2 + 3 = 5,\forall x\end{array}\)
Vậy giá trị nhỏ nhất bằng 5
Dấu “=” xảy ra khi x = 0
Unit 2. Health
Chương VIII. Làm quen với biến cố và xác suất của biến cố
Unit 10: Energy sources
Unit 6: Be green
Unit 4: In the picture
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7