Đề bài
Một sân bóng đá được tổ chức tại một sân vận động có sức chứa 40 000 người, ban tổ chức phát hành hai loại vé là 400 000 đồng và 200 000 đồng. Do điều kiện sân đấu nên số lượng vé 400 000 đồng không lớn hơn số lượng vé 200 000 đồng. Để an toàn phòng dịch, liên đoàn bóng đá yêu cầu số lượng vé không vượt quá 30% sức chứa của sân. Để tổ chức được trận đấu thì số tiền thu được thông qua bán vé không được ít hơn 3 tỉ đồng. Gọi x, y lần lượt là số vé vé 400 000 đồng và 200 000 đồng được bán ra.
a) Viết hệ bất phương trình bậc nhất hai ẩn x, y để biển diễn số lượng vé mỗi loại được bán ra đảm bảo mục đích của ban tổ chức.
b) Chỉ ra hai nghiệm của hệ bất phương trình đó.
Phương pháp giải - Xem chi tiết
Gọi x, y lần lượt là số vé 400 000 đồng và 200 000 đồng được bán ra
Sử dụng dữ liệu đề bài cho để lập hệ bất phương trình ẩn x, y
Xác định miền nghiệm của bất phương tình trên mặt phẳng tọa độ
Lời giải chi tiết
Gọi x, y lần lượt là số vé 400 000 đồng và 200 000 đồng được bán ra (\(x,y \in {\mathbb{N}^*}\))
30% sức chứa của sân là: \(30\% .40000 = 12000\) (người)
Số lượng vé không vượt quá 30% sức chứa của sân nên ta có: \(x + y \le 12000\) (1)
Số lượng vé 400 000 đồng không lớn hơn số lượng vé 200 000 đồng do đó \(x \le y\) hay \(x - y \le 0\)(2)
Số tiền thu được thông qua bán vé không được ít hơn 3 tỉ đồng nên ta có:
\(400.000x + 200.000y \ge 3.00.000.000\) hay \(2x + y \ge 15.000\) (3)
Từ (1), (2) và (3) và điều kiện của x và y ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 12.000}\\{x - y \le 0}\\{2x + y \ge 15.000}\\{x \ge 0}\\{y \ge 0}\end{array}} \right.\)
b) Chọn x = 5 000 và y = 5 000, ta thấy cặp số này thỏa mãn tất cả các bất phương trình trong hệ nên (5 000; 5 000) là nghiệm của hệ bất phương trình.
Chọn x = 4 000 và y = 7 000, ta thấy cặp số này thỏa mãn tất cả các bất phương trình trong hệ nên (4 000; 7 000) là nghiệm của hệ bất phương trình
Unit 10: Ecotourism
Chuyên đề 3. Đọc, viết, giới thiệu một tập thơ, một tập truyện ngắn hoặc một tiểu thuyết
Chuyên đề 3. Ba đường conic và ứng dụng
Unit 6. Destinations
Chủ đề 1: Xây dựng nhà trường
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10