Đề bài
Cho đường tròn (C) tâm \({F_1}\), bán kính r và một điểm \({F_2}\) thỏa mãn \({F_1}{F_2} = 4r\).
a) Chứng tỏ rằng tâm của các đường tròn đi qua \({F_2}\) và tiếp xúc với \((C)\) nằm trên một đường hypebol (H).
b) Viết phương trình chính tắc và tìm tâm sai của (H).
Lời giải chi tiết
a) Xét đường tròn \((M,R)\) đi qua \({F_2}\) và tiếp xúc với \((C)\)
Ta có: \(M{F_1} = R + r;M{F_2} = R \Rightarrow M{F_1} - M{F_2} = r\)
\( \Rightarrow M \in \) hypebol (H) có \(2c = 4r\) và \(2a = r\)
b) Ta có: \({b^2} = {a^2} - {c^2} = 4{r^2} - {\left( {\frac{r}{2}} \right)^2} = \frac{{15{r^2}}}{4}\)
Phương trình chính tắc của (H) là \(\frac{{{x^2}}}{{\frac{{{r^2}}}{4}}} - \frac{{{y^2}}}{{\frac{{15{r^2}}}{4}}} = 1\)
Tâm sai \(e = \frac{c}{a} = \frac{{2r}}{{\frac{r}{2}}} = 4\)
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10