1. Nội dung câu hỏi
Cho hình thoi \(ABCD\) có \(AB = 2\)cm, \(\widehat A = \frac{1}{2}\widehat B\). Các điểm \(H,K\) thay đổi lần lượt trên cạnh \(AD,CD\) sao cho \(\widehat {HBK} = 60^\circ \).
a) Chứng minh \(DH + DK\) không đổi
b) Xác định vị trí của các điểm \(H,K\) để độ dài \(HK\) ngắn nhất. Tính độ dài ngắn nhất đó.
2. Phương pháp giải
Dựa vào tính chất của hình thoi:
Trong một hình thoi:
- Các cạnh đối song song
- Các góc đối bằng nhau
- Hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường
- Hai đường chéo là các đường phân giác của các góc ở đỉnh.
3. Lời giải chi tiết
a) Do \(ABCD\) là hình thoi nên \(AB = DA = 2cm,\widehat {ABD} = \widehat {CDB} = \frac{1}{2}\widehat {ABC}\)
Mà \(\widehat {BAD} = \frac{1}{2}\widehat {ABC}\), suy ra \(\widehat {BAD} = \widehat {ABD}\). Do đó tam giác \(ABD\) cân tại \(D\). Suy ra \(DA = DB\).
Mà \(AB = DA\), suy ra \(AB = DA = DB\).
\(\Delta ABH = \Delta DBK\) (g.c.g). Suy ra \(AH = DK\). Do đó \(DH + DK = DH + AH = AD\).
Vậy \(DH + DK\) không đổi
b) Do \(\Delta ABH = \Delta DBk\) nên \(BH = BK\).
Tam giác \(BHK\) có \(BH = BK\) và \(\widehat {HBK} = 60^\circ \) nên tam giác \(BHK\) là tam giác đều.
Suy ra \(HK = BH = BK\).
Do đó, độ dài \(HK\) ngắn nhất khi \(BH\) và \(BK\) ngắn nhất. Vậy \(H,K\) lần lượt là hình chiếu của \(B\) trên \(AD,CD\).
Khi đó \(\Delta ABH = \Delta DBH\) (cạnh huyền – cạnh góc vuông)
Suy ra \(AH = DH = \frac{{AD}}{2} = 1cm\)
Trong tam giác \(ABH\) vuông tại \(H\), ta có: \(A{B^2} = A{H^2} + B{H^2}\). Suy ra ta tính được \(BH = \sqrt 3 cm\). Vậy độ dài ngắn nhất của \(HK\) là \(\sqrt 3 \) cm.
Unit 2: I'd Like to Be a Pilot.
PHẦN MỘT. VẼ KỸ THUẬT
Chủ đề 4. Kĩ thuật điện
Chương 3. Kĩ thuật điện
Đề cương ôn tập học kì 1 - Vật lí 8
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8