1. Nội dung câu hỏi
Tìm \(m\) để hàm số sau liên tục trên toàn bộ tập số thực \(\mathbb{R}\):
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{\sqrt {x + 5} - 2}}{{x + 1}}}&{{\rm{\;khi\;}}x > - 1}\\{m \cdot {4^{ - x}} + 1}&{{\rm{\;khi\;}}x \le - 1}\end{array}} \right.\)
2. Phương pháp giải
Xét tính liên tục của hàm số\(f(x) = \left\{ \begin{array}{l}{f_1}(x)\,khi\,x \ge {x_0}\\{f_2}(x)\,khi\,x < {x_0}\end{array} \right.\)trên tập số thực R.
Cách giải :
*Xét tính liên tục của hàm số tại \(x = {x_0}\)
Hàm số \(f\left( x \right)\) liên tục tại \({x_0}\)
*Xét tính liên tục của hàm số với mọi \(x > {x_0}\)
*Xét tính liên tục của hàm số với mọi \(x < {x_0}\)
3. Lời giải chi tiết
Dễ thấy hàm số liên tục trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
Hàm số liên tục trên toàn bộ tập số thực \(\mathbb{R}\) khi và chỉ khi hàm số liên tục tại \(x = - 1\).
Ta xét tính liên tục của hàm số tại \(x = - 1\).
\(\mathop {\lim }\limits_{x \to - {1^ - }} f(x) = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {m{{.4}^{ - x}} + 1} \right) = 4m + 1\) và \(f\left( { - 1} \right) = 4m + 1\)
Suy ra hàm số liên tục trên \(\mathbb{R}\) khi và chỉ khi \(\frac{1}{4} = 4m + 1 \Leftrightarrow m = - \frac{3}{{16}}\).
Review 3
SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2
CHƯƠNG IV: ĐẠI CƯƠNG VỀ HÓA HỌC HỮU CƠ
CHƯƠNG II. CẢM ỨNG
Unit 7: Independent living
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11