1. Nội dung câu hỏi
Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD.
2. Phương pháp giải
Sử dụng tính chất của hình thang cân, tam giác cân, đường trung trực.
3. Lời giải chi tiết
Do ABCD là hình thang cân nên AD = BC, AC = BD, \(\widehat {ADC} = \widehat {BCD}\)
Xét \(\Delta ABC\) và \(\Delta BAD\) có
\(BC = AD,AC = BD\)
Cạnh AB chung
Do đó \(\Delta ABC = \Delta BAD\) (c.c.c)
Suy ra \(\widehat {BAC} = \widehat {ABD}\).
Từ đó \(\Delta OAB\) là tam giác cân tại O, nên \(OA = OB.\)
Ta có: \(OA + OC = AC\);\(OB + OD = BD\) , mà \(OA = OB,AC = BD\)
Suy ra \(OC = OD\)
Do đó O cách đều A và B; O cách đều C và D;
Do \(AB//CD\) nên \(\widehat {SAB} = \widehat {SDC}\); \(\widehat {SBA} = \widehat {SCD}\) (các cặp góc ở vị trí đồng vị)
Mà \(\widehat {ADC} = \widehat {BCD}\) hay \(\widehat {SDC} = \widehat {SCD}\)
suy ra \(\widehat {SAB} = \widehat {SDC} = \widehat {SBA} = \widehat {SCD}\).
Suy ra là \(\Delta SAB\), \(\Delta SCD\) các tam giác cân tại đỉnh S nên \(SA = SB,SC = SD\)
Do đó S cũng cách đều A và B, cách đều C và D.
Vậy S và O cùng nằm trên đường trung trực của AB, của CD nên đường thẳng SO đi qua trung điểm của AB, CD.
Cumulative review
Chủ đề 3. Trách nhiệm với bản thân
Chủ đề V. Điện
Unit 7: Environmental protection
Unit 1. City & Country
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8