1. Nội dung câu hỏi
Cho hai điểm B, C cố định trên đường tròn \(\left( {O;{\rm{ }}R} \right)\) và một điểm A thay đổi trên đường tròn đó. Chứng minh trực tâm H của tam giác ABC luôn nằm trên một đường tròn cố định.
2. Phương pháp giải
Ta đi chứng minh trực tâm H của tam giác ABC luôn nằm trên ảnh của đường tròn \(\left( {O;{\rm{ }}R} \right)\) qua phép tịnh tiến theo \(\overrightarrow {B'C} \)
3. Lời giải chi tiết
Kẻ đường kính BB’.
Do B, C cố định trên (O) nên B’, C cũng cố định trên (O).
Suy ra \(\overrightarrow {B'C} \) là vectơ không đổi.
Ta có \(\widehat {BCB'} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O)).
Suy ra \(BC \bot B'C.\)
Mà \(AH \bot BC\) (do H là trực tâm của ∆ABC).
Do đó \(AH//B'C\,\,\left( 1 \right)\)
Chứng minh tương tự, ta được \(AB'//CH{\rm{ }}\left( 2 \right)\)
Từ (1), (2), suy ra tứ giác AHCB’ là hình bình hành.
Suy ra \(AH{\rm{ }} = {\rm{ }}B'C.\)
Mà \(AH{\rm{ }}//{\rm{ }}B'C\) (chứng minh trên).
Vì vậy \(\overrightarrow {AH} = \overrightarrow {B'C} \)
Do đó \(H = {T_{\overrightarrow {B'C} }}\left( A \right)\).
Vậy khi A thay đổi trên đường tròn (O) thì trực tâm H của tam giác ABC luôn nằm trên ảnh của đường tròn (O) là đường tròn (O’) qua \({{\rm{T}}_{\overrightarrow {B'C} }}\).
CHƯƠNG V: CẢM ỨNG ĐIỆN TỪ
Unit 2: Vietnam and ASEAN
Bài 3. Phòng chống tệ nạn xã hội ở VN trong thời kì hội nhập quốc tế
Chuyên đề 2. Lí thuyết đồ thị
Bài 8: Tiết 1: Tự nhiên, dân cư, xã hội Liên bang Nga - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11