Đề bài
Hai địa điểm A và B cách hai bởi một con sông (coi hai bờ sông song song). Người ta muốn xây một chiếc cầu bắc vuông góc với bờ sông để có thể đi từ A đến B. Với các số liệu (tính theo đơn vị km) cho trên Hình 28, tìm \(x\) (km) để xác định vị trí đặt chân cầu sao cho khoảng cách từ B đến chân cầu phía B gấp đôi khoảng cách từ A đến chân cầu phía A.
Phương pháp giải - Xem chi tiết
+ Gọi chân cầu phía A là M, chân cầu phía B là N. Tính AM, BN dựa vào Pytago.
+ Giải phương trình \(BM = 2AM\) có dạng \(\sqrt {f\left( x \right)} = \sqrt {g\left( x \right)} \)
\(\sqrt {f\left( x \right)} = \sqrt {g\left( x \right)} \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) \ge 0\\f\left( x \right) = g\left( x \right)\end{array} \right.\)
Lời giải chi tiết
Gọi chân cầu phía A là M, chân cầu phía B là N.
Dựa vào hình 28, áp dụng định lý Pytago, ta có:
\(AM = \sqrt {{x^2} + {2^2}} = \sqrt {{x^2} + 4} ,BN = \sqrt {{{\left( {6 - x} \right)}^2} + {4^2}} = \sqrt {{x^2} - 12x + 52} \)
Theo đề bài, ta có: \(BM = 2AM \Leftrightarrow \sqrt {{x^2} - 12x + 52} = 2\sqrt {{x^2} + 4} \)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 4 \ge 0\\{x^2} - 12x + 52 = 4\left( {{x^2} + 4} \right)\end{array} \right.\\ \Leftrightarrow {x^2} - 12x + 52 = 4{x^2} + 16\\ \Leftrightarrow 3{x^2} + 12x - 36 = 0\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2\\x = - 6\end{array} \right.\end{array}\)
Do \(x > 0\) nên \(x = 2\).
Vậy với \(x = 2\) km thì khoảng cách từ B đến chân cầu phía B gấp đôi khoảng cách từ A đến chân cầu phía A.
Chương 8. Địa lí dân cư
Unit 10: New Ways to Learn
Phần tiếng Việt
SBT VĂN 10 TẬP 2 CÁNH DIỀU
Dục Thúy sơn
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10