1. Nội dung câu hỏi
Nếu \(a > 1\) thì:
A. \({a^{ - \sqrt 3 }} > \frac{1}{{{a^{\sqrt 5 }}}}.\)
B. \({a^{ - \sqrt 3 }} < \frac{1}{{{a^{\sqrt 5 }}}}.\)
C. \({a^{ - \sqrt 3 }} \le \frac{1}{{{a^{\sqrt 5 }}}}.\)
D. \({a^{ - \sqrt 3 }} = \frac{1}{{{a^{\sqrt 5 }}}}.\)
2. Phương pháp giải
Sử dụng tính chất: Nếu \(a > 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha > \beta .\)
3. Lời giải chi tiết
Do \(a > 1\) và \( - \sqrt 3 > - \sqrt 5 \Rightarrow {a^{ - \sqrt 3 }} > {a^{ - \sqrt 5 }} = \frac{1}{{{a^{\sqrt 5 }}}}.\)
Đáp án A.
Review 3
Phần 1. Một số vấn đề về kinh tế - xã hội thế giới
Chương III. Công nghệ thức ăn chăn nuôi
CHƯƠNG IV. SINH SẢN - SINH HỌC 11
Grammar Expansion
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11