PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 1

Bài 65 trang 41 SBT toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Chứng minh rằng:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Giá trị của biểu thức \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\) bằng \(1\) với mọi giá trị \(x ≠ 0\) và \(x ≠ -1\)

Phương pháp giải:

Thực hiện các phép tính với phân thức để chứng minh khẳng định đã cho.

Lời giải chi tiết:

\(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\)

Biểu thức \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\) xác định khi \(x \ne 0\)

Biểu thức \(\displaystyle {{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)\) xác định khi \(x \ne 0\) và \(x + 1 \ne 0\) hay xác định khi \(x \ne 0\) và \(x \ne  - 1\)

Vậy với điều kiện \(x \ne 0\) và \(x \ne -1\)

Ta có : \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\)

\(\displaystyle   = {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}.{{1 + x} \over x}} \right]  \)\(\displaystyle   = {\left( {{{x + 1} \over x}} \right)^2}:\left( {{{{x^2} + 1} \over {{x^2}}} + {2 \over x}} \right)\)\(\displaystyle  = {\left( {{{x + 1} \over x}} \right)^2}:{{{x^2} + 1 + 2x} \over {{x^2}}}  \)\(\displaystyle  = {\left( {{{x + 1} \over x}} \right)^2}:{{{{\left( {x + 1} \right)}^2}} \over {{x^2}}}\)\(\displaystyle  = {{{{\left( {x + 1} \right)}^2}} \over {{x^2}}}.{{{x^2}} \over {{{\left( {x + 1} \right)}^2}}} = 1 \)

Vậy giá trị của biểu thức \(\displaystyle {\left( {{{x + 1} \over x}} \right)^2}\)\(:\displaystyle \left[ {{{{x^2} + 1} \over {{x^2}}} + {2 \over {x + 1}}\left( {{1 \over x} + 1} \right)} \right]\) bằng \(1\) với mọi giá trị \(x ≠ 0\) và \(x ≠ -1\)

 

LG b

Giá trị của biểu thức \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\) bằng \(1\) khi \(x \ne 0,\)\(x \ne  - 3,\)\(x \ne 3,\)\(x \ne  - {3 \over 2}\)

Phương pháp giải:

Thực hiện các phép tính với phân thức để chứng minh khẳng định đã cho.

Lời giải chi tiết:

Biểu thức : \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\) xác định khi \(x - 3 \ne 0,\) \(2x + 3 \ne 0,\) \({x^2} - 3x \ne 0\) và \({x^2} - 9 \ne 0\) hay \(x \ne 3;\)\(x \ne \displaystyle  - {3 \over 2};\) \(x \ne 0;\) \(x \ne 3\) và \(x \ne  \pm 3\)

Vậy điều kiện \(x \ne 0,\) \(x \ne 3,\) \(x \ne  - 3\) và \(x \ne \displaystyle  - {3 \over 2}\)

Ta có: \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\)

\(\displaystyle   = {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left[ {{{x + 3} \over {x\left( {x - 3} \right)}} - {x \over {\left( {x + 3} \right)\left( {x - 3} \right)}}} \right]  \)\(\displaystyle  = {x \over {x - 3}} - {{x\left( {x + 3} \right)} \over {2x + 3}}\)\(.\displaystyle {{{{\left( {x + 3} \right)}^2} - {x^2}} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}}  \)\(\displaystyle  = {x \over {x - 3}} - {{{x^2} + 6x + 9 - {x^2}} \over {\left( {2x + 3} \right)\left( {x - 3} \right)}}\)\(\displaystyle  = {x \over {x - 3}} - {{3\left( {2x + 3} \right)} \over {\left( {2x + 3} \right)\left( {x - 3} \right)}}  \)\(\displaystyle   = {x \over {x - 3}} - {3 \over {x - 3}} = {{x - 3} \over {x - 3}} = 1 \)

Vậy giá trị của biểu thức \(\displaystyle {x \over {x - 3}} - {{{x^2} + 3x} \over {2x + 3}}\)\(.\displaystyle \left( {{{x + 3} \over {{x^2} - 3x}} - {x \over {{x^2} - 9}}} \right)\) bằng \(1\) khi \(x \ne 0,\)\(x \ne  - 3,\)\(x \ne 3,\)\(x \ne  - {3 \over 2}\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved