Đề bài
Xét tính đúng sai và viết mệnh đề phủ định của các mệnh đề sau:
a) \(\exists x \in \mathbb{N},2{x^2} + x = 1\)
b) \(\forall x \in \mathbb{R},{x^2} + 5 > 4x\)
Phương pháp giải - Xem chi tiết
Bước 1: Giải phương trình và bất phương trình đã cho
Bước 2: Kết luận tính đúng sai và viết mệnh đề phủ định
Lời giải chi tiết
a) Giải phương trình \(2{x^2} + x = 1\)
\(\begin{array}{l} \Leftrightarrow 2{x^2} + x - 1 = 0\\ \Leftrightarrow \left( {2x - 1} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{2}\\x = - 1\end{array} \right.\end{array}\)
Vậy mệnh đề \(\exists x \in \mathbb{N},2{x^2} + x = 1\) đúng
Mệnh đề phủ định: \(\forall x \in \mathbb{N},2{x^2} + x \ne 1\)
b) Giải bất phương trình \({x^2} + 5 > 4x\)
\(\begin{array}{l}{x^2} + 5 > 4x \Leftrightarrow {x^2} + 5 - 4x > 0\\ \Leftrightarrow {x^2} - 4x + 4 + 1 = {\left( {x - 2} \right)^2} + 1 \ge 1\\ \Rightarrow {x^2} + 5 > 4x\end{array}\)
Vậy mệnh đề \(\forall x \in \mathbb{R},{x^2} + 5 > 4x\) đúng
Mệnh đề phủ định: \(\exists x \in \mathbb{R},{x^2} + 5 < 4x\)
Chương II. Động học
Chuyên đề 3: Ba đường conic và ứng dụng
Đề thi học kì 2
Unit 10: New Ways to Learn
Chủ đề B. Mạng máy tính và internet
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10