ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Lý thuyết Đạo hàm cấp hai

1. Định nghĩa

Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right)\).

+)  Nếu hàm số \(f'\left( x \right)\) có đạo hàm thì đạo hàm của nó được gọi là đạo hàm cấp hai của hàm số \(f\left( x \right)\), kí hiệu là \(f''\left( x \right)\).

+) Đạo hàm cấp \(n\left( {n \in N,n \ge 2} \right)\) của hàm số \(y = f\left( x \right)\) là đạo hàm của hàm số \({f^{\left( {n - 1} \right)}}\left( x \right)\).

Kí hiệu: \({f^{\left( n \right)}}\left( x \right)\) hay \({y^{\left( n \right)}}\): 

Tức là \({f^{\left( n \right)}}\left( x \right) = \left[ {{f^{\left( {n - 1} \right)}}\left( x \right)} \right]'\)

Đặc biệt: \({f^{(0)}}\left( x \right)= f\left( x \right)\)

2. Ý nghĩa cơ học của đạo hàm cấp hai

Xét một chất điểm chuyển động có phương trình là: \(S = s\left( t \right)\).

Khi đó, vận tốc của chất điểm tại thời điểm \({t_0}\) là: \(v\left( {{t_0}} \right) = S'\left( {{t_0}} \right)\)

Gia tốc của chất điểm tại thời điểm \({t_0}\) là: \(a\left( {{t_0}} \right) = S''\left( {{t_0}} \right)\)

3. Đạo hàm cấp cao của một số hàm cơ bản

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved