PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

Lý thuyết rút gọn phân thức

1. Rút gọn phân thức đại số

Ví dụ: \(\dfrac{{20{x^2} - 45}}{{{{\left( {2x - 3} \right)}^2}}} = \dfrac{{5\left( {4{x^2} - 9} \right)}}{{{{\left( {2x - 3} \right)}^2}}} = \dfrac{{5\left( {2x - 3} \right)\left( {2x + 3} \right)}}{{{{\left( {2x - 3} \right)}^2}}} = \dfrac{{5\left( {2x + 3} \right)}}{{2x - 3}}.\)

2. Các dạng toán thường gặp

Dạng 1: Rút gọn phân thức

Phương pháp:

Để rút dọn phân thức ta tiến hành các bước sau:

Bước 1:  Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

Bước 2:  Chia cả tử và mẫu cho nhân tử chung (nếu có).

Dạng 2: Tính giá trị của phân thức tại giá trị cho trước của biến.

Phương pháp:

Bước 1: Rút gọn phân thức (nếu cần)

Bước 2: Thay giá trị của biến vào phân thức rồi thực hiện phép tính.

Dạng 3: Tìm giá trị nguyên của biến để phân thức đạt giá trị nguyên.

Phương pháp:

Bước 1: Tìm điều kiện xác định

Bước 2: Ta biến đổi để đưa phân thức về dạng \(m + \dfrac{n}{B}\)  (nếu có thể).

Bước 3: Phân thức \(\dfrac{A}{B}\) đạt giá trị nguyên khi \(A \vdots B\) , từ đó tìm được \(x.\)

Bước 4: So sánh với điều kiện để kết luận các giá trị thỏa mãn.

Dạng 4: Tìm giá trị nhỏ nhất, giá trị lớn nhất của phân thức.

Phương pháp:

Ta biến đổi phân thức để sử dụng được các kiến thức sau:

\({\left( {A + B} \right)^2} + m \ge m\,\,;\) \(m - {\left( {A + B} \right)^2} \le m\) với mọi \(A,B\) . Dấu “=” xảy ra khi \(A =  - B.\)

\({\left( {A - B} \right)^2} + m \ge m\,\,;\) \(m - {\left( {A - B} \right)^2} \le m\) với mọi \(A,B\) . Dấu “=” xảy ra khi \(A = B.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved